scholarly journals Diverse demographic histories in a guild of hymenopteran parasitoids

2019 ◽  
Author(s):  
William Walton ◽  
Graham N Stone ◽  
Konrad Lohse

AbstractSignatures of changes in population size have been detected in genome-wide variation in many species. However, the causes of such changes and the extent to which they are shared across co-distributed species remain poorly understood. During Pleistocene glacial maxima, many temperate European species were confined to southern refugia. While vicariance and range expansion processes associated with glacial cycles have been widely studied, little is known about the demographic history of refugial populations, and the extent and causes of demographic variation among codistributed species. We used whole genome sequence data to reconstruct and compare demographic histories during the Quaternary for Iberian refuge populations in a single ecological guild (seven species of chalcid parasitoid wasps associated with oak cynipid galls). We find support for large changes in effective population size (Ne) through the Pleistocene that coincide with major climate change events. However, there is little evidence that the timing, direction and magnitude of demographic change are shared across species, suggesting that demographic histories are largely idiosyncratic. Our results are compatible with the idea that specialist parasitoids attacking a narrow range of hosts experience greater fluctuations in Ne than generalists.

2017 ◽  
Author(s):  
Erik M. Volz ◽  
Xavier Didelot

AbstractNon-parametric population genetic modeling provides a simple and flexible approach for studying demographic history and epidemic dynamics using pathogen sequence data. Existing Bayesian approaches are premised on stationary stochastic processes which may provide an unrealistic prior for epidemic histories which feature extended period of exponential growth or decline. We show that non-parametric models defined in terms of the growth rate of the effective population size can provide a more realistic prior for epidemic history. We propose a non-parametric autoregressive model on the growth rate as a prior for effective population size, which corresponds to the dynamics expected under many epidemic situations. We demonstrate the use of this model within a Bayesian phylodynamic inference framework. Our method correctly reconstructs trends of epidemic growth and decline from pathogen genealogies even when genealogical data is sparse and conventional skyline estimators erroneously predict stable population size. We also propose a regression approach for relating growth rates of pathogen effective population size and time-varying variables that may impact the replicative fitness of a pathogen. The model is applied to real data from rabies virus and Staphylococcus aureus epidemics. We find a close correspondence between the estimated growth rates of a lineage of methicillin-resistant S. aureus and population-level prescription rates of β-lactam antibiotics. The new models are implemented in an open source R package called skygrowth which is available at https://mrc-ide.github.io/skygrowth/.


2008 ◽  
Vol 80 (3) ◽  
pp. 433-443 ◽  
Author(s):  
Valdir M. Stefenon ◽  
Hermann Behling ◽  
Oliver Gailing ◽  
Reiner Finkeldey

Up to date, little is known about the relationship between historical demography and the current genetic structure of A. Angus As a first effort towards overcoming this lack, microsatellite data scored in six populations and isozyme allele frequencies published for 11 natural stands of this species were analysed in order to assess molecular signatures of populations' demographic history. Signatures of genetic bottlenecks were captured in all analysed populations of southeastern Brazil. Among southern populations, signatures of small effective population size were observed in only three out of 13 populations. Southern populations likely experienced faster recovery of population size after migration onto highlands. Accordingly, current genetic diversity of the southern populations gives evidence of fast population size recovery. In general, demographic history of A. Angusmatches climatic dynamics of southern and southeastern Brazil during the Pleistocene and Holocene. Palynological records and reconstruction of the past climatic dynamics of southeastern and southern Brazil support the hypothesis of different population size recovery dynamics for populations from these regions.


2019 ◽  
Author(s):  
Shuai Sun ◽  
Yue Wang ◽  
Xiao Du ◽  
Lei Li ◽  
Xiaoning Hong ◽  
...  

AbstractMekong tiger perch (Datnioides undecimradiatus) is one ornamental fish and a vulnerable species, which belongs to order Lobotiformes. Here, we report a ∼595 Mb D. undecimradiatus genome, which is the first whole genome sequence in the order Lobotiformes. Based on this genome, the phylogenetic tree analysis suggested that Lobotiformes and Sciaenidae are closer than Tetraodontiformes, resolving a long-time dispute. We depicted the pigment synthesis pathway in Mekong tiger perch and result confirmed that this pathway had evolved from the shared whole genome duplication. We also estimated the demographic history of Mekong tiger perch, showing the effective population size suffered a continuous reduction possibly related to the contraction of immune-related genes. Our study provided a reference genome resource for the Lobotiformes, as well as insights into the phylogeny of Eupercaria and biological conservation.


Author(s):  
Andy Foote ◽  
Rebecca Hooper ◽  
Alana Alexander ◽  
Robin Baird ◽  
Charles Baker ◽  
...  

Runs of homozygosity (ROH) occur when offspring inherit haplotypes that are identical by descent from each parent. Length distributions of ROH are informative about population history; specifically the probability of inbreeding mediated by mating system and/or population demography. Here, we investigate whether variation in killer whale (Orcinus orca) demographic history is reflected in genome-wide heterozygosity and ROH length distributions, using a global dataset of 26 genomes representative of geographic and ecotypic variation in this species, and two F1 admixed individuals with Pacific-Atlantic parentage. We first reconstruct demographic history for each population as changes in effective population size through time using the pairwise sequential Markovian coalescent (PSMC) method. We find a subset of populations declined in effective population size during the Late Pleistocene, while others had more stable demography. Genomes inferred to have undergone ancestral declines in effective population size, were autozygous at hundreds of short ROH (<1Mb), reflecting high background relatedness due to coalescence of haplotypes deep within the pedigree. In contrast, longer and therefore younger ROH (>1.5 Mb) were found in low latitude populations and populations of known conservation concern, including a Scottish population, for which 37.8% of the autosomes comprised of ROH >1.5 Mb in length.


2019 ◽  
Author(s):  
Xi Wang ◽  
Carolina Bernhardsson ◽  
Pär K. Ingvarsson

AbstractUnder the neutral theory, species with larger effective population sizes are expected to harbour higher genetic diversity. However, across a wide variety of organisms, the range of genetic diversity is orders of magnitude more narrow than the range of effective population size. This observation has become known as Lewontin’s paradox and although aspects of this phenomenon have been extensively studied, the underlying causes for the paradox remain unclear. Norway spruce (Picea abies) is a widely distributed conifer species across the northern hemisphere and it consequently plays a major role in European forestry. Here, we use whole-genome re-sequencing data from 35 individuals to perform population genomic analyses in P. abies in an effort to understand what drives genome-wide patterns of variation in this species. Despite having a very wide geographic distribution and an enormous current population size, our analyses find that genetic diversity of P.abies is low across a number of populations (p=0.005-0.006). To assess the reasons for the low levels of genetic diversity, we infer the demographic history of the species and find that it is characterised by several re-occurring bottlenecks with concomitant decreases in effective population size can, at least partly, provide an explanation for low polymorphism we observe in P. abies. Further analyses suggest that recurrent natural selection, both purifying and positive selection, can also contribute to the loss of genetic diversity in Norway spruce by reducing genetic diversity at linked sites. Finally, the overall low mutation rates seen in conifers can also help explain the low genetic diversity maintained in Norway spruce.


2019 ◽  
Vol 286 (1903) ◽  
pp. 20181976 ◽  
Author(s):  
Tanya N. Phung ◽  
Robert K. Wayne ◽  
Melissa A. Wilson ◽  
Kirk E. Lohmueller

The demographic history of dogs is complex, involving multiple bottlenecks, admixture events and artificial selection. However, existing genetic studies have not explored variance in the number of reproducing males and females, and whether it has changed across evolutionary time. While male-biased mating practices, such as male-biased migration and multiple paternity, have been observed in wolves, recent breeding practices could have led to female-biased mating patterns in breed dogs. For example, breed dogs are thought to have experienced a popular sire effect, where a small number of males father many offspring with a large number of females. Here we use genetic variation data to test how widespread sex-biased mating practices in canines are during different evolutionary time points. Using whole-genome sequence data from 33 dogs and wolves, we show that patterns of diversity on the X chromosome and autosomes are consistent with a higher number of reproducing males than females over ancient evolutionary history in both dogs and wolves, suggesting that mating practices did not change during early dog domestication. By contrast, since breed formation, we found evidence for a larger number of reproducing females than males in breed dogs, consistent with the popular sire effect. Our results confirm that canine demography has been complex, with opposing sex-biased processes occurring throughout their history. The signatures observed in genetic data are consistent with documented sex-biased mating practices in both the wild and domesticated populations, suggesting that these mating practices are pervasive.


2018 ◽  
Author(s):  
Flora Jay ◽  
Simon Boitard ◽  
Frédéric Austerlitz

AbstractSpecies generally undergo a complex demographic history, consisting, in particular, of multiple changes in population size. Genome-wide sequencing data are potentially highly informative for reconstructing this demographic history. A crucial point is to extract the relevant information from these very large datasets. Here we designed an approach for inferring past demographic events from a moderate number of fully sequenced genomes. Our new approach uses Approximate Bayesian Computation (ABC), a simulation-based statistical framework that allows (i) identifying the best demographic scenario among several competing scenarios, and (ii) estimating the best-fitting parameters under the chosen scenario. ABC relies on the computation of summary statistics. Using a cross-validation approach, we showed that statistics such as the lengths of haplotypes shared between individuals, or the decay of linkage disequilibrium with distance, can be combined with classical statistics (eg heterozygosity, Tajima’s D) to accurately infer complex demographic scenarios including bottlenecks and expansion periods. We also demonstrated the importance of simultaneously estimating the genotyping error rate. Applying our method on genome-wide human-sequence databases, we finally showed that a model consisting in a bottleneck followed by a Paleolithic and a Neolithic expansion was the most relevant for Eurasian populations.


2021 ◽  
Author(s):  
Leanne Faulks ◽  
Prashant Kaushik ◽  
Shoji Taniguchi ◽  
Masashi Sekino ◽  
Reiichiro Nakamichi ◽  
...  

Assessing the status or population size of species is a key task for wildlife conservation and the sustainable management of harvested species. In particular, assessing historical changes in population size provides an evolutionary perspective on current population dynamics and can help distinguish between anthropogenic and natural causes for population decline. Japanese eel (Anguilla japonica) is an endangered yet commercially important catadromous fish species. Here we assess the demographic history of Japanese eel using the pairwise and multiple sequentially Markovian coalescent methods. The analyses indicate a reduction in effective population size (Ne) from 38 000 to 10 000 individuals between 4 and 1 Ma, followed by an increase to 80 000 individuals, between 1 Ma and 22-30 kya. Approximately 22-30 kya there is evidence for a reduction in Ne to approximately 60 000 individuals. These events are likely due to changes in environmental conditions, such as sea level and oceanic currents, especially around the last glacial maximum (19-33 kya). The results of this study suggest that Japanese eel has experienced at least two population bottlenecks, interspersed by a period of population growth. This pattern of demographic history may make Japanese eel sensitive to current and future population declines. Conservation management of Japanese eel should focus on practical ways to prevent further population decline and the loss of genetic diversity that is essential for the species to adapt to changing environmental conditions such as climate change.


2017 ◽  
Vol 38 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Victoria Sophia Farrar ◽  
Taylor Edwards ◽  
Kevin Edward Bonine

Population genetic baselines for species perceived to be at-risk are crucial for monitoring population trends and making well-informed management decisions. We characterized the genetic status of a population of Gila monsters (Heloderma suspectum), a large venomous lizard native to deserts of the southwestern United States and northern Mexico, by sampling 100 individuals in Sonoran Desert upland habitat at Saguaro National Park, Arizona, USA. We used 18 microsatellite markers, along with 1195 bp of sequence data from the mitochondrial DNA 12S locus, to examine genetic diversity, estimate effective population size, and assess demographic history. Despite suburban development adjacent to the study area, we observed high genetic diversity with uninhibited gene flow within this protected population. We estimated effective population size (Ne) for the total sample area (80 km2) using the linkage disequilibrium method in NeEstimator to be 94 individuals (95% confidence interval: 80.7-111.2). In 2011, we used capture-recapture methods to estimate that 80 adult Gila monsters (95% CI = 37-225) inhabited the area along the 14-km transect that we surveyed most frequently; probability of detecting resident Gila monsters during surveys was <0.01, highlighting the challenges of studying the species. Despite being considered an elusive and thus potentially rare species, these data reveal that in this protected environment the population appears healthy and robust. The results provide an important genetic baseline for future studies and monitoring, and exemplify the success of protective population measures in National Parks and under Arizona state laws.


Sign in / Sign up

Export Citation Format

Share Document