scholarly journals Evidences of delayed size recovery in Araucaria angustifolia populations after post-glacial colonization of highlands in Southeastern Brazil

2008 ◽  
Vol 80 (3) ◽  
pp. 433-443 ◽  
Author(s):  
Valdir M. Stefenon ◽  
Hermann Behling ◽  
Oliver Gailing ◽  
Reiner Finkeldey

Up to date, little is known about the relationship between historical demography and the current genetic structure of A. Angus As a first effort towards overcoming this lack, microsatellite data scored in six populations and isozyme allele frequencies published for 11 natural stands of this species were analysed in order to assess molecular signatures of populations' demographic history. Signatures of genetic bottlenecks were captured in all analysed populations of southeastern Brazil. Among southern populations, signatures of small effective population size were observed in only three out of 13 populations. Southern populations likely experienced faster recovery of population size after migration onto highlands. Accordingly, current genetic diversity of the southern populations gives evidence of fast population size recovery. In general, demographic history of A. Angusmatches climatic dynamics of southern and southeastern Brazil during the Pleistocene and Holocene. Palynological records and reconstruction of the past climatic dynamics of southeastern and southern Brazil support the hypothesis of different population size recovery dynamics for populations from these regions.

2019 ◽  
Author(s):  
William Walton ◽  
Graham N Stone ◽  
Konrad Lohse

AbstractSignatures of changes in population size have been detected in genome-wide variation in many species. However, the causes of such changes and the extent to which they are shared across co-distributed species remain poorly understood. During Pleistocene glacial maxima, many temperate European species were confined to southern refugia. While vicariance and range expansion processes associated with glacial cycles have been widely studied, little is known about the demographic history of refugial populations, and the extent and causes of demographic variation among codistributed species. We used whole genome sequence data to reconstruct and compare demographic histories during the Quaternary for Iberian refuge populations in a single ecological guild (seven species of chalcid parasitoid wasps associated with oak cynipid galls). We find support for large changes in effective population size (Ne) through the Pleistocene that coincide with major climate change events. However, there is little evidence that the timing, direction and magnitude of demographic change are shared across species, suggesting that demographic histories are largely idiosyncratic. Our results are compatible with the idea that specialist parasitoids attacking a narrow range of hosts experience greater fluctuations in Ne than generalists.


2021 ◽  
Author(s):  
Leanne Faulks ◽  
Prashant Kaushik ◽  
Shoji Taniguchi ◽  
Masashi Sekino ◽  
Reiichiro Nakamichi ◽  
...  

Assessing the status or population size of species is a key task for wildlife conservation and the sustainable management of harvested species. In particular, assessing historical changes in population size provides an evolutionary perspective on current population dynamics and can help distinguish between anthropogenic and natural causes for population decline. Japanese eel (Anguilla japonica) is an endangered yet commercially important catadromous fish species. Here we assess the demographic history of Japanese eel using the pairwise and multiple sequentially Markovian coalescent methods. The analyses indicate a reduction in effective population size (Ne) from 38 000 to 10 000 individuals between 4 and 1 Ma, followed by an increase to 80 000 individuals, between 1 Ma and 22-30 kya. Approximately 22-30 kya there is evidence for a reduction in Ne to approximately 60 000 individuals. These events are likely due to changes in environmental conditions, such as sea level and oceanic currents, especially around the last glacial maximum (19-33 kya). The results of this study suggest that Japanese eel has experienced at least two population bottlenecks, interspersed by a period of population growth. This pattern of demographic history may make Japanese eel sensitive to current and future population declines. Conservation management of Japanese eel should focus on practical ways to prevent further population decline and the loss of genetic diversity that is essential for the species to adapt to changing environmental conditions such as climate change.


1967 ◽  
Vol 20 (5) ◽  
pp. 959 ◽  
Author(s):  
DW Cooper ◽  
LF Bailey ◽  
O Mayo

Population data for the transferrin varil;mts in the South Australian and Camden Park strains of the Australian Merino are reported. In all, five variants designated A, B, C, D, and E were distinguished. The relationship between these variants and those reported in previous investigations of the Merino and other breeds has been determined. In two out of the six samples there were significant departures from Hardy-Weinberg expectations. It was observed that closed flocks with small effective population size, Camden Park and one South Australian (Roseworthy) flock had fewer than five variants, the number generally found in all strains of the Australian Merino so far examined. For the Roseworthy material it was possible to demonstrate that the parent population, Anama, had the five variants. Further, the two Roseworthy flocks derived from the Anama stock had significantly different gene frequencies from that flock.


2016 ◽  
Author(s):  
Julie Jacquemin ◽  
Nora Hohmann ◽  
Matteo Buti ◽  
Alberto Selvaggi ◽  
Thomas Müller ◽  
...  

AbstractTheory predicts that a small effective population size leads to slower accumulation of mutations, increased levels of genetic drift and reduction in the efficiency of natural selection. Therefore endemic species should harbor low levels of genetic diversity and exhibit a reduced ability of adaptation to environmental changes.Arabidopsis pedemontanaandArabidopsis cebennensis, two endemic species from Italy and France respectively, provide an excellent model to study the adaptive potential of species with small distribution ranges. To evaluate the genome-wide levels and patterns of genetic variation, effective population size and demographic history of both species, we genotyped 53A. pedemontanaand 28A. cebennensisindividuals across the entire species ranges with Genotyping-by-Sequencing. SNPs data confirmed a low genetic diversity forA. pedemontanaalthough its effective population size is relatively high. Only a weak population structure was observed over the small distribution range ofA. pedemontana, resulting from an isolation-by-distance pattern of gene flow. In contrary,A. cebennensisindividuals clustered in three populations according to their geographic distribution. Despite this and a larger distribution, the overall genetic diversity was even lower forA. cebennensisthan forA. pedemontana.A demographic analysis demonstrated that both endemics have undergone a strong population size decline in the past, without recovery. The more drastic decline observed inA. cebennensispartially explains the very small effective population size observed in the present population. In light of these results, we discuss the adaptive potential of these endemic species in the context of rapid climate change.


2021 ◽  
Author(s):  
Long Huang ◽  
Guochen Feng ◽  
Dan Li ◽  
Weiping Shang ◽  
Lishi Zhang ◽  
...  

Abstract The genetic variation and distribution of a population depend largely on the demographic history. For instance, populations that have recently experienced shrinkage usually have a lower genetic diversity. However, some endangered species with a narrow distribution have a high genetic diversity resulting from large historical population sizes and long generation times. In addition, very recent population bottlenecks may not be reflected in the population’s genetic information. In this study, we used a mitochondrial DNA marker and 15 microsatellite markers to reveal the genetic diversity, recent changes, inbreeding, and demographic history of a Jankowski’s bunting (Emberiza jankowskii) population in eastern Inner Mongolia. The results show that the genetic diversity of the population remained at a relatively stable and high level until recently. Severe population shrinkage did not result in a considerable lack of genetic variation because of the large historical population size and relatively short periods of human disturbance. In addition, introgression and gene flow among populations compensate for the loss of genetic variation to some extent. Considering the current small effective population size and the existence of inbreeding, we recommend that habitat protection be continued to maximize the genetic diversity of the Jankowski’s bunting population.


Genetics ◽  
2003 ◽  
Vol 164 (4) ◽  
pp. 1511-1518 ◽  
Author(s):  
Ning Yu ◽  
Michael I Jensen-Seaman ◽  
Leona Chemnick ◽  
Judith R Kidd ◽  
Amos S Deinard ◽  
...  

Abstract Comparison of the levels of nucleotide diversity in humans and apes may provide much insight into the mechanisms of maintenance of DNA polymorphism and the demographic history of these organisms. In the past, abundant mitochondrial DNA (mtDNA) polymorphism data indicated that nucleotide diversity (π) is more than threefold higher in chimpanzees than in humans. Furthermore, it has recently been claimed, on the basis of limited data, that this is also true for nuclear DNA. In this study we sequenced 50 noncoding, nonrepetitive DNA segments randomly chosen from the nuclear genome in 9 bonobos and 17 chimpanzees. Surprisingly, the π value for bonobos is only 0.078%, even somewhat lower than that (0.088%) for humans for the same 50 segments. The π values are 0.092, 0.130, and 0.082% for East, Central, and West African chimpanzees, respectively, and 0.132% for all chimpanzees. These values are similar to or at most only 1.5 times higher than that for humans. The much larger difference in mtDNA diversity than in nuclear DNA diversity between humans and chimpanzees is puzzling. We speculate that it is due mainly to a reduction in effective population size (Ne) in the human lineage after the human-chimpanzee divergence, because a reduction in Ne has a stronger effect on mtDNA diversity than on nuclear DNA diversity.


2021 ◽  
Vol 78 (2) ◽  
Author(s):  
Błażej Wójkiewicz ◽  
Andrzewj Lewandowski ◽  
Weronika B. Żukowska ◽  
Monika Litkowiec ◽  
Witold Wachowiak

Abstract Context Black poplar (Populus nigra L.) is a keystone species of European riparian ecosystems that has been negatively impacted by riverside urbanization for centuries. Consequently, it has become an endangered tree species in many European countries. The establishment of a suitable rescue plan of the remaining black poplar forest stands requires a preliminary knowledge about the distribution of genetic variation among species populations. However, for some parts of the P. nigra distribution in Europe, the genetic resources and demographic history remain poorly recognized. Aims Here, we present the first study on identifying and characterizing the genetic resources of black poplar from the Oder valley in Poland. This study (1) assessed the genetic variability and effective population size of populations and (2) examined whether gene flow is limited by distance or there is a single migrant pool along the studied river system. Methods A total of 582 poplar trees derived from nine black poplar populations were investigated with nuclear microsatellite markers. Results (1) The allelic richness and heterozygosity level were high and comparable between populations. (2) The genetic structure of the studied poplar stands was not homogenous. (3) The signatures of past bottlenecks were detected. Conclusion Our study (1) provides evidence for genetic substructuring of natural black poplar populations from the studied river catchment, which is not a frequent phenomenon reported for this species in Europe, and (2) indicates which poplar stands may serve as new genetic conservation units (GCUs) of this species in Europe. Key message The genetic resources of black poplar in the Oder River valley are still substantial compared to those reported for rivers in Western Europe. On the other hand, clear signals of isolation by distance and genetic erosion reflected in small effective population sizes and high spatial genetic structure of the analyzed populations were detected. Based on these findings, we recommend the in situ and ex situ conservation strategies for conserving and restoring the genetic resources of black poplar populations in this strongly transformed by human river valley ecosystem.


Sign in / Sign up

Export Citation Format

Share Document