scholarly journals Enhancement of gene expression noise due to nonspecific transcription factor binding

Author(s):  
Supravat Dey ◽  
Mohammad Soltani ◽  
Abhyudai Singh

ABSTRACTThe genome contains several high-affinity non-functional binding sites for transcription factors (TFs) creating a hidden and unexplored layer of gene regulation. We investigate the role of such “decoy sites” in controlling noise (random fluctuations) in the level of a TF that is synthesized in stochastic bursts. Prior studies have assumed that decoy-bound TFs are protected from degradation, and in this case decoys function to buffer noise. Relaxing this assumption to consider arbitrary degradation rates for both bound/unbound TF states, we find rich noise behaviors. For low-affinity decoys, noise in the level of unbound TF always monotonically decreases to the Poisson limit with increasing decoy numbers. In contrast, for high affinity decoys, noise levels first increase with increasing decoy numbers, before decreasing back to the Poisson limit. Interestingly, while protection of bound TFs from degradation slows the time-scale of fluctuations in the unbound TF levels, decay of bounds TFs leads to faster fluctuations and smaller noise propagation to downstream target proteins. In summary, our analysis reveals stochastic dynamics emerging from nonspecific binding of TFs, and highlight the dual role of decoys as attenuators or amplifiers of gene expression noise depending on their binding affinity and stability of the bound TF.

2017 ◽  
Author(s):  
François Bertaux ◽  
Samuel Marguerat ◽  
Vahid Shahrezaei

AbstractThe cell division rate, size, and gene expression programmes change in response to external conditions. These global changes impact on average concentrations of biomolecule and their variability or noise. Gene expression is inherently stochastic, and noise levels of individual proteins depend on synthesis and degradation rates as well as on cell-cycle dynamics. We have modelled stochastic gene expression inside growing and dividing cells to study the effect of division rates on noise in mRNA and protein expression. We use assumptions and parameters relevant to Escherichia coli, for which abundant quantitative data are available. We find that coupling of transcription, but not translation rates to the rate of cell division can result in protein concentration and noise homeostasis across conditions. Interestingly, we find that the increased cell size at fast division rates, observed in E. coli d other unicellular organisms, buffers noise levels even for proteins with decreased expression at faster growth. We then investigate the functional importance of these regulations using gene regulatory networks that exhibit bi-stability and oscillations. We find that network topology affects robustness to changes in division rate in complex and unexpected ways. In particular, a simple model of persistence, based on global physiological feedback, predicts increased proportion of persistors cells at slow division rates. Altogether, our study reveals how cell size regulation in response to cell division rate could help controlling gene expression noise. It also highlights that understanding of circuits’ robustness across growth conditions is key for the effective design of synthetic biological systems.


2020 ◽  
Author(s):  
Supravat Dey ◽  
Abhyudai Singh

AbstractGenetically-identical cells can show remarkable intercellular variability in the level of a given protein which is commonly known as the gene expression noise. Besides intrinsic fluctuations that arise from the inherent stochasticity of the biochemical processes, a significant source of expression noise is extrinsic. Such extrinsic noise in gene expression arises from cell-to-cell differences in expression machinery, transcription factors, cell size, and cell cycle stage. Here, we consider the synthesis of a transcription factor (TF) whose production is impacted by a dynamic extrinsic disturbance, and systematically investigate the regulation of expression noise by decoy sites that can sequester the protein. Our analysis shows that increasing decoy numbers reduce noise in the level of the free (unbound) TF with noise levels approaching the Poisson limit for large number of decoys. Interestingly, the suppression of expression noise compared to no-decoy levels is maximized at intermediate disturbance timescales. Finally, we quantify the noise propagation from the TF to a downstream target protein and find counterintuitive behaviors. More specifically, for nonlinear dose responses of target-protein activation, the noise in the target protein can increase with the inclusion of decoys, and this phenomenon is explained by smaller but more prolonged fluctuations in the TF level. In summary, our results illustrates the nontrivial effects of high-affinity decoys in shaping the stochastic dynamics of gene expression to alter cell fate and phenotype at the single-cell level.


2018 ◽  
Vol 5 (3) ◽  
pp. 172234 ◽  
Author(s):  
François Bertaux ◽  
Samuel Marguerat ◽  
Vahid Shahrezaei

The cell division rate, size and gene expression programmes change in response to external conditions. These global changes impact on average concentrations of biomolecule and their variability or noise. Gene expression is inherently stochastic, and noise levels of individual proteins depend on synthesis and degradation rates as well as on cell-cycle dynamics. We have modelled stochastic gene expression inside growing and dividing cells to study the effect of division rates on noise in mRNA and protein expression. We use assumptions and parameters relevant to Escherichia coli , for which abundant quantitative data are available. We find that coupling of transcription, but not translation rates to the rate of cell division can result in protein concentration and noise homeostasis across conditions. Interestingly, we find that the increased cell size at fast division rates, observed in E. coli and other unicellular organisms, buffers noise levels even for proteins with decreased expression at faster growth. We then investigate the functional importance of these regulations using gene regulatory networks that exhibit bi-stability and oscillations. We find that network topology affects robustness to changes in division rate in complex and unexpected ways. In particular, a simple model of persistence, based on global physiological feedback, predicts increased proportion of persister cells at slow division rates. Altogether, our study reveals how cell size regulation in response to cell division rate could help controlling gene expression noise. It also highlights that understanding circuits' robustness across growth conditions is key for the effective design of synthetic biological systems.


2019 ◽  
Author(s):  
Stephan Uphoff

DNA damage caused by alkylating chemicals induces an adaptive response in Escherichia coli cells that increases their tolerance to further damage. Signalling of the response occurs through methylation of the Ada protein which acts as a damage sensor and induces its own gene expression through a positive feedback loop. However, random fluctuations in the abundance of Ada jeopardize the reliability of the induction signal. I developed a quantitative model to test how gene expression noise and feedback amplification affect the fidelity of the adaptive response. A remarkably simple model accurately reproduced experimental observations from single-cell measurements of gene expression dynamics in a microfluidic device. Stochastic simulations showed that delays in the adaptive response are a direct consequence of the very low number of Ada molecules present to signal DNA damage. For cells that have zero copies of Ada, response activation becomes a memoryless process that is dictated by an exponential waiting time distribution between basal Ada expression events. Experiments also confirmed the model prediction that the strength of the adaptive response drops with increasing growth rate of cells.


2018 ◽  
Author(s):  
Max Mundt ◽  
Alexander Anders ◽  
Seán Murray ◽  
Victor Sourjik

AbstractGene expression noise arises from stochastic variation in the synthesis and degradation of mRNA and protein molecules and creates differences in protein numbers across populations of genetically identical cells. Such variability can lead to imprecision and reduced performance of both native and synthetic networks. In principle, gene expression noise can be controlled through the rates of transcription, translation and degradation, such that different combinations of those rates lead to the same protein concentrations but at different noise levels. Here, we present a “noise tuner” which allows orthogonal control over the transcription and the mRNA degradation rates by two different inducer molecules. Combining experiments with theoretical analysis, we show that in this system the noise is largely determined by the transcription rate whereas mean expression can be independently adjusted by mRNA stability. This noise tuner enables twofold changes in gene expression noise over a fivefold range of mean protein levels. We demonstrated the efficacy of the noise tuner in a complex regulatory network by varying gene expression noise in the mating pathway of Saccharomyces cerevisiae, which allowed us to control the output noise and the mutual information transduced through the pathway. The noise tuner thus represents an effective tool of gene expression noise control, both to interrogate noise sensitivity of natural networks and enhance performance of synthetic circuits.


2021 ◽  
Author(s):  
Hanah Goetz ◽  
Austin Stone ◽  
Rong Zhang ◽  
Ying-Cheng Lai ◽  
Xiaojun Tian

Despite extensive investigation demonstrating that resource competition can significantly alter the circuits' deterministic behaviors, a fundamental issue is how resource competition contributes to the gene expression noise and how the noise can be controlled. Utilizing a two-gene circuit as a prototypical system, we uncover a surprising double-edged role of resource competition in gene expression noise: the competition decreases noise through a resource constraint but generates its own type of noise which we name as ''resource competitive noise.'' Utilization of orthogonal resources enables retaining the noise reduction conferred by resource constraint while removing the added resource competitive noise. The noise reduction effects are studied using three negative feedback controller types: negatively competitive regulation (NCR), local, and global controllers, each having four placement architectures in the protein biosynthesis pathway (mRNA or protein inhibition on transcription or translation). Our results show that both local and NCR controllers with mRNA-mediated inhibition are efficacious at reducing noise, with NCR controllers demonstrating a superior noise-reduction capability. We also find that combining negative feedback controllers with orthogonal resources can improve the local controllers. This work provides deep insights into the origin of stochasticity in gene circuits with resource competition and guidance for developing effective noise control strategies.


2021 ◽  
Vol 118 (42) ◽  
pp. e2018640118
Author(s):  
LaTasha C. R. Fraser ◽  
Ryan J. Dikdan ◽  
Supravat Dey ◽  
Abhyudai Singh ◽  
Sanjay Tyagi

Many eukaryotic genes are expressed in randomly initiated bursts that are punctuated by periods of quiescence. Here, we show that the intermittent access of the promoters to transcription factors through relatively impervious chromatin contributes to this “noisy” transcription. We tethered a nuclease-deficient Cas9 fused to a histone acetyl transferase at the promoters of two endogenous genes in HeLa cells. An assay for transposase-accessible chromatin using sequencing showed that the activity of the histone acetyl transferase altered the chromatin architecture locally without introducing global changes in the nucleus and rendered the targeted promoters constitutively accessible. We measured the gene expression variability from the gene loci by performing single-molecule fluorescence in situ hybridization against mature messenger RNAs (mRNAs) and by imaging nascent mRNA molecules present at active gene loci in single cells. Because of the increased accessibility of the promoter to transcription factors, the transcription from two genes became less noisy, even when the average levels of expression did not change. In addition to providing evidence for chromatin accessibility as a determinant of the noise in gene expression, our study offers a mechanism for controlling gene expression noise which is otherwise unavoidable.


Sign in / Sign up

Export Citation Format

Share Document