scholarly journals Dual mechanisms of ictal high frequency oscillations in rhythmic onset seizures

Author(s):  
Elliot H. Smith ◽  
Edward M. Merricks ◽  
Jyun-You Liou ◽  
Camilla Casadei ◽  
Lucia Melloni ◽  
...  

ABSTRACTObjectiveHigh frequency oscillations (HFOs) recorded from intracranial electrodes during epileptiform discharges have been proposed as a biomarker of epileptic brain sites and may also be a useful feature for seizure forecasting, with mixed results. Currently, pathological subclasses of HFOs have been defined primarily by frequency characteristics. Despite this, there has been limited investigation into the spatial context of HFOs with recruitment of local cortex into seizure discharging. We sought to further understand the biophysical underpinnings of ictal HFOs.MethodsHere we examine ictal HFOs from multi-scale electrophysiological recordings during spontaneous human rhythmic onset seizures. We compare features of ictal discharges in both the seizure core and penumbra, as defined by multiunit activity patterns.ResultsWe show marked differences in spectral features, unit coupling, and information theoretic characteristics of HFOs during ictal discharges before and after local seizure invasion. Furthermore, we tie these timing-related differences to different spatial domains of seizures, showing that eccentric, penumbral discharges are widely distributed and less useful for seizure localization, which may explain the variable utility of HFOs in seizure localization and forecasting.InterpretationWe thus identify two distinct classes of ictal HFOs, implying two different mechanisms underlying pathological HFOs with contrasting significance for seizure localization.

2020 ◽  
Author(s):  
Elliot H. Smith ◽  
Edward M. Merricks ◽  
Jyun-You Liou ◽  
Camilla Casadei ◽  
Lucia Melloni ◽  
...  

ABSTRACTHigh frequency oscillations (HFOs) recorded from intracranial electrodes during epileptiform discharges are a proposed biomarker of epileptic brain tissue and may also be useful for seizure forecasting, with mixed results. Despite such potential for HFOs, there is limited investigation into the spatial context of HFOs and their relationship to simultaneously recorded neuronal activity. We sought to further understand the biophysical underpinnings of ictal HFOs using unit recordings in the human neocortex and mesial temporal lobe during rhythmic onset seizures. We compare features of ictal discharges in both the seizure core and penumbra (spatial seizure domains defined by multiunit activity patterns). We report differences in spectral features, unit-local field potential coupling, and information theoretic characteristics of HFOs before and after local seizure invasion. Furthermore, we tie these timing-related differences to spatial domains of seizures, showing that penumbral discharges are widely distributed and less useful for seizure localization.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Elliot H. Smith ◽  
Edward M. Merricks ◽  
Jyun-You Liou ◽  
Camilla Casadei ◽  
Lucia Melloni ◽  
...  

Abstract High frequency oscillations (HFOs) are bursts of neural activity in the range of 80 Hz or higher, recorded from intracranial electrodes during epileptiform discharges. HFOs are a proposed biomarker of epileptic brain tissue and may also be useful for seizure forecasting. Despite such clinical utility of HFOs, the spatial context and neuronal activity underlying these local field potential (LFP) events remains unclear. We sought to further understand the neuronal correlates of ictal high frequency LFPs using multielectrode array recordings in the human neocortex and mesial temporal lobe during rhythmic onset seizures. These multiscale recordings capture single cell, multiunit, and LFP activity from the human brain. We compare features of multiunit firing and high frequency LFP from microelectrodes and macroelectrodes during ictal discharges in both the seizure core and penumbra (spatial seizure domains defined by multiunit activity patterns). We report differences in spectral features, unit-local field potential coupling, and information theoretic characteristics of high frequency LFP before and after local seizure invasion. Furthermore, we tie these time-domain differences to spatial domains of seizures, showing that penumbral discharges are more broadly distributed and less useful for seizure localization. These results describe the neuronal and synaptic correlates of two types of pathological HFOs in humans and have important implications for clinical interpretation of rhythmic onset seizures.


2020 ◽  
Vol 14 ◽  
Author(s):  
Yanting Yao ◽  
Mengmeng Wu ◽  
Lina Wang ◽  
Longnian Lin ◽  
Jiamin Xu

The prefrontal cortex (PFC) plays a central role in executive functions and inhibitory control over many cognitive behaviors. Dynamic changes in local field potentials (LFPs), such as gamma oscillation, have been hypothesized to be important for attentive behaviors and modulated by local interneurons such as parvalbumin (PV) cells. However, the precise relationships between the firing patterns of PV interneurons and temporal dynamics of PFC activities remains elusive. In this study, by combining in vivo electrophysiological recordings with optogenetics, we investigated the activities of prefrontal PV interneurons and categorized them into three subtypes based on their distinct firing rates under different behavioral states. Interestingly, all the three subtypes of interneurons showed strong phase-locked firing to cortical high frequency oscillations (HFOs), but not to theta or gamma oscillations, despite of behavior states. Moreover, we showed that sustained optogenetic stimulation (over a period of 10 s) of PV interneurons can consequently modulate the activities of local pyramidal neurons. Interestingly, such optogenetic manipulations only showed moderate effects on LFPs in the PFC. We conclude that prefrontal PV interneurons are consist of several subclasses of cells with distinct state-dependent modulation of firing rates, selectively coupled to HFOs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yuki Kuwabara ◽  
Siamak Salavatian ◽  
Kimberly Howard-Quijano ◽  
Tomoki Yamaguchi ◽  
Eevanna Lundquist ◽  
...  

Introduction: Sympathetic hyperactivity is strongly associated with ventricular arrhythmias and sudden cardiac death. Neuromodulation provides therapeutic options for ventricular arrhythmias by modulating cardiospinal reflexes and reducing sympathetic output at the level of the spinal cord. Dorsal root ganglion stimulation (DRGS) is a recent neuromodulatory approach; however, its role in reducing ventricular arrhythmias has not been evaluated. The aim of this study was to determine if DRGS can reduce cardiac sympathoexcitation and the indices for ventricular arrhythmogenicity induced by programmed ventricular extrastimulation. We evaluated the efficacy of thoracic DRGS at both low (20 Hz) and high (1 kHz) stimulation frequencies.Methods: Cardiac sympathoexcitation was induced in Yorkshire pigs (n = 8) with ventricular extrastimulation (S1/S2 pacing), before and after DRGS. A DRG-stimulating catheter was placed at the left T2 spinal level, and animals were randomized to receive low-frequency (20 Hz and 0.4 ms) or high-frequency (1 kHz and 0.03 ms) DRGS for 30 min. High-fidelity cardiac electrophysiological recordings were performed with an epicardial electrode array measuring the indices of ventricular arrhythmogenicity—activation recovery intervals (ARIs), electrical restitution curve (Smax), and Tpeak–Tend interval (Tp-Te interval).Results: Dorsal root ganglion stimulation, at both 20 Hz and 1 kHz, decreased S1/S2 pacing-induced ARI shortening (20 Hz DRGS −21±7 ms, Control −50±9 ms, P = 0.007; 1 kHz DRGS −13 ± 2 ms, Control −46 ± 8 ms, P = 0.001). DRGS also reduced arrhythmogenicity as measured by a decrease in Smax (20 Hz DRGS 0.5 ± 0.07, Control 0.7 ± 0.04, P = 0.006; 1 kHz DRGS 0.5 ± 0.04, Control 0.7 ± 0.03, P = 0.007), and a decrease in Tp-Te interval/QTc (20 Hz DRGS 2.7 ± 0.13, Control 3.3 ± 0.12, P = 0.001; 1 kHz DRGS 2.8 ± 0.08, Control; 3.1 ± 0.03, P = 0.007).Conclusions: In a porcine model, we show that thoracic DRGS decreased cardiac sympathoexcitation and indices associated with ventricular arrhythmogenicity during programmed ventricular extrastimulation. In addition, we demonstrate that both low-frequency and high-frequency DRGS can be effective neuromodulatory approaches for reducing cardiac excitability during sympathetic hyperactivity.


2021 ◽  
Vol 14 ◽  
Author(s):  
Olivia N. Arski ◽  
Julia M. Young ◽  
Mary-Lou Smith ◽  
George M. Ibrahim

Working memory (WM) deficits are pervasive co-morbidities of epilepsy. Although the pathophysiological mechanisms underpinning these impairments remain elusive, it is thought that WM depends on oscillatory interactions within and between nodes of large-scale functional networks. These include the hippocampus and default mode network as well as the prefrontal cortex and frontoparietal central executive network. Here, we review the functional roles of neural oscillations in subserving WM and the putative mechanisms by which epilepsy disrupts normative activity, leading to aberrant oscillatory signatures. We highlight the particular role of interictal epileptic activity, including interictal epileptiform discharges and high frequency oscillations (HFOs) in WM deficits. We also discuss the translational opportunities presented by greater understanding of the oscillatory basis of WM function and dysfunction in epilepsy, including potential targets for neuromodulation.


2018 ◽  
Vol 28 (07) ◽  
pp. 1850001 ◽  
Author(s):  
Lucia Rita Quitadamo ◽  
Roberto Mai ◽  
Francesca Gozzo ◽  
Veronica Pelliccia ◽  
Francesco Cardinale ◽  
...  

Pathological High-Frequency Oscillations (HFOs) have been recently proposed as potential biomarker of the seizure onset zone (SOZ) and have shown superior accuracy to interictal epileptiform discharges in delineating its anatomical boundaries. Characterization of HFOs is still in its infancy and this is reflected in the heterogeneity of analysis and reporting methods across studies and in clinical practice. The clinical approach to HFOs identification and quantification usually still relies on visual inspection of EEG data. In this study, we developed a pipeline for the detection and analysis of HFOs. This includes preliminary selection of the most informative channels exploiting statistical properties of the pre-ictal and ictal intracranial EEG (iEEG) time series based on spectral kurtosis, followed by wavelet-based characterization of the time–frequency properties of the signal. We performed a preliminary validation analyzing EEG data in the ripple frequency band (80–250 Hz) from six patients with drug-resistant epilepsy who underwent pre-surgical evaluation with stereo-EEG (SEEG) followed by surgical resection of pathologic brain areas, who had at least two-year positive post-surgical outcome. In this series, kurtosis-driven selection and wavelet-based detection of HFOs had average sensitivity of 81.94% and average specificity of 96.03% in identifying the HFO area which overlapped with the SOZ as defined by clinical presurgical workup. Furthermore, the kurtosis-based channel selection resulted in an average reduction in computational time of 66.60%.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0259933
Author(s):  
Zsófia Nyerges-Bohák ◽  
Krisztina Nagy ◽  
László Rózsa ◽  
Péter Póti ◽  
Levente Kovács

Changes in heart rate and heart rate variabilty (HRV) were investigated in untrained (UT; starting their first racing season) and detrained (DT; with 1–3 years of race experience) racehorses before and after 14-week conventional training. HRV was measured at rest over 1 h between 9:00 and 10:00 AM on the usual rest day of the horses. The smallest worthwhile change (SWC) rate was calculated for all HRV parameters. UT horses had significantly higher heart rate compared to DT (P<0.001). There were no gender- or training-related differences in heart rate. The root-mean-square of successive differences (rMSSD) in the consecutive inter-beat-intervals obtained after the 14-week training period was lower compared to pre-training rMSSD (P<0.001). The rMSSD was not influenced by breed, age or gender. In DT horses, there was a significant decrease in the high frequency (HF) component of HRV (P≤0.05) as the result of the 14-week training. These results may reflect saturation of high-frequency oscillations of inter-beat intervals rather than the reduction in parasympathetic influence on the heart. The HF did not differ significantly between the two measurements in UT horses; however, 16.6% of the animals showed a decrease in HF below SWC (P≤0.05). This supports the likelihood of parasympathetic saturation. Although no significant decrease in heart rate was found for the post-training, 30.0% of DT and 58.3% of UT horses still showed a decrease in heart rate below the SWC. Also by individual examination, it was also visible that despite significant post-training decrease in rMSSD, 1 (4.6%) DT and 2 (6.7%) UT horses reached SWC increase in rMMSD. In the case of these horses, the possibility of maladaptation should be considered. The present results indicate that similar to as found in human athletes, cardiac ANS status of racehorses also changes during the physiological adaptation to training. To explore more precise links between HRV and training effectiveness in horses, a more frequent recording would be necessary. Detailed analysis of HRV parameters based on SWC will be able to highlight the importance of fitness evaluation at individual level.


2021 ◽  
Vol 15 ◽  
Author(s):  
Hanan El Shakankiry ◽  
Susan T. Arnold

IntroductionDespite all the efforts for optimizing epilepsy management in children over the past decades, there is no clear consensus regarding whether to treat or not to treat epileptiform discharges (EDs) after a first unprovoked seizure or the optimal duration of therapy with anti-seizure medication (ASM). It is therefore highly needed to find markers on scalp electroencephalogram (EEG) that can help identify pathological EEG discharges that require treatment.Aim of the studyThis retrospective study aimed to identify whether the coexistence of ripples/high-frequency oscillations (HFOs) with interictal EDs (IEDs) in routinely acquired scalp EEG is associated with a higher risk of seizure recurrence and could be used as a prognostic marker.Methods100 children presenting with new onset seizure to Children’s Medical Center- Dallas during 2015–2016, who were not on ASM and had focal EDs on an awake and sleep EEG recorded with sample frequency of 500 HZ, were randomly identified by database review. EEGs were analyzed blinded to the data of the patients. HFOs were visually identified using review parameters including expanded time base and adjusted filter settings.ResultsThe average age of patients was 6.3 years (±4.35 SD). HFOs were visually identified in 19% of the studied patients with an inter-rater reliability of 99% for HFO negative discharges and 78% agreement for identification of HFOs. HFOs were identified more often in the younger age group; however, they were identified in 11% of patients &gt;5 years old. They were more frequently associated with spikes than with sharp waves and more often with higher amplitude EDs. Patients with HFOs were more likely to have a recurrence of seizures in the year after the first seizure (P &lt; 0.05) and to continue to have seizures after 2 years (P &lt; 0.0001). There was no statistically significant difference between the two groups with regards to continuing ASM after 2 years.ConclusionIncluding analysis for HFOs in routine EEG interpretation may increase the yield of the study and help guide the decision to either start or discontinue ASM. In the future, this may also help to identify pathological discharges with deleterious effects on the growing brain and set a new target for the management of epilepsy.


Sign in / Sign up

Export Citation Format

Share Document