scholarly journals Personalised prediction of daily eczema severity scores using a mechanistic machine learning model

Author(s):  
Guillem Hurault ◽  
Elisa Domínguez-Hüttinger ◽  
Sinéad M. Langan ◽  
Hywel C. Williams ◽  
Reiko J. Tanaka

ABSTRACTBackgroundAtopic dermatitis (AD) is a chronic inflammatory skin disease with periods of flares and remission. Designing personalised treatment strategies for AD is challenging, given the apparent unpredictability and large variation in AD symptoms and treatment responses within and across individuals. Better prediction of AD severity over time for individual patients could help to select optimum timing and type of treatment for improving disease control.ObjectiveWe aimed to develop a mechanistic machine learning model that predicts the patient-specific evolution of AD severity scores on a daily basis.MethodsWe designed a probabilistic predictive model and trained it using Bayesian inference with the longitudinal data from two published clinical studies. The data consisted of daily recordings of AD severity scores and treatments used by 59 and 334 AD children over 6 months and 16 weeks, respectively. Internal and external validation of the predictive model was conducted in a forward-chaining setting.ResultsOur model was able to predict future severity scores at the individual level and improved chance-level forecast by 60%. Heterogeneous patterns in severity trajectories were captured with patient-specific parameters such as the short-term persistence of AD severity and responsiveness to topical steroids, calcineurin inhibitors and step-up treatment.ConclusionOur proof of principle model successfully predicted the daily evolution of AD severity scores at an individual level, and could inform the design of personalised treatment strategies that can be tested in future studies.

2020 ◽  
Vol 50 (11) ◽  
pp. 1258-1266 ◽  
Author(s):  
Guillem Hurault ◽  
Elisa Domínguez‐Hüttinger ◽  
Sinéad M. Langan ◽  
Hywel C. Williams ◽  
Reiko J. Tanaka

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6543 ◽  
Author(s):  
Diptesh Das ◽  
Junichi Ito ◽  
Tadashi Kadowaki ◽  
Koji Tsuda

We present an interpretable machine learning model for medical diagnosis called sparse high-order interaction model with rejection option (SHIMR). A decision tree explains to a patient the diagnosis with a long rule (i.e., conjunction of many intervals), while SHIMR employs a weighted sum of short rules. Using proteomics data of 151 subjects in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset, SHIMR is shown to be as accurate as other non-interpretable methods (Sensitivity, SN = 0.84 ± 0.1, Specificity, SP = 0.69 ± 0.15 and Area Under the Curve, AUC = 0.86 ± 0.09). For clinical usage, SHIMR has a function to abstain from making any diagnosis when it is not confident enough, so that a medical doctor can choose more accurate but invasive and/or more costly pathologies. The incorporation of a rejection option complements SHIMR in designing a multistage cost-effective diagnosis framework. Using a baseline concentration of cerebrospinal fluid (CSF) and plasma proteins from a common cohort of 141 subjects, SHIMR is shown to be effective in designing a patient-specific cost-effective Alzheimer’s disease (AD) pathology. Thus, interpretability, reliability and having the potential to design a patient-specific multistage cost-effective diagnosis framework can make SHIMR serve as an indispensable tool in the era of precision medicine that can cater to the demand of both doctors and patients, and reduce the overwhelming financial burden of medical diagnosis.


2018 ◽  
Author(s):  
Steen Lysgaard ◽  
Paul C. Jennings ◽  
Jens Strabo Hummelshøj ◽  
Thomas Bligaard ◽  
Tejs Vegge

A machine learning model is used as a surrogate fitness evaluator in a genetic algorithm (GA) optimization of the atomic distribution of Pt-Au nanoparticles. The machine learning accelerated genetic algorithm (MLaGA) yields a 50-fold reduction of required energy calculations compared to a traditional GA.


Author(s):  
Dhilsath Fathima.M ◽  
S. Justin Samuel ◽  
R. Hari Haran

Aim: This proposed work is used to develop an improved and robust machine learning model for predicting Myocardial Infarction (MI) could have substantial clinical impact. Objectives: This paper explains how to build machine learning based computer-aided analysis system for an early and accurate prediction of Myocardial Infarction (MI) which utilizes framingham heart study dataset for validation and evaluation. This proposed computer-aided analysis model will support medical professionals to predict myocardial infarction proficiently. Methods: The proposed model utilize the mean imputation to remove the missing values from the data set, then applied principal component analysis to extract the optimal features from the data set to enhance the performance of the classifiers. After PCA, the reduced features are partitioned into training dataset and testing dataset where 70% of the training dataset are given as an input to the four well-liked classifiers as support vector machine, k-nearest neighbor, logistic regression and decision tree to train the classifiers and 30% of test dataset is used to evaluate an output of machine learning model using performance metrics as confusion matrix, classifier accuracy, precision, sensitivity, F1-score, AUC-ROC curve. Results: Output of the classifiers are evaluated using performance measures and we observed that logistic regression provides high accuracy than K-NN, SVM, decision tree classifiers and PCA performs sound as a good feature extraction method to enhance the performance of proposed model. From these analyses, we conclude that logistic regression having good mean accuracy level and standard deviation accuracy compared with the other three algorithms. AUC-ROC curve of the proposed classifiers is analyzed from the output figure.4, figure.5 that logistic regression exhibits good AUC-ROC score, i.e. around 70% compared to k-NN and decision tree algorithm. Conclusion: From the result analysis, we infer that this proposed machine learning model will act as an optimal decision making system to predict the acute myocardial infarction at an early stage than an existing machine learning based prediction models and it is capable to predict the presence of an acute myocardial Infarction with human using the heart disease risk factors, in order to decide when to start lifestyle modification and medical treatment to prevent the heart disease.


Author(s):  
Dhaval Patel ◽  
Shrey Shrivastava ◽  
Wesley Gifford ◽  
Stuart Siegel ◽  
Jayant Kalagnanam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document