scholarly journals Precise mapping of new group I introns in tRNA genes

2020 ◽  
Author(s):  
Kelly P. Williams

ABSTRACTBacterial tRNA have been found interrupted at various positions in the anticodon loop by group I introns, in four types. The primary bioinformatic tool for group I intron discovery is a covariance model that can identify conserved features in the catalytic core and can sometimes identify the typical uridine residue at the -1 position, preceding the 5-prime splice site, but cannot identify the typical guanidine residue at the omega position, preceding the 3-prime splice site, to achieve precise mapping. One approach to complete the automation of group I intron mapping is to focus instead on the exons, which is enabled by the regularity of tRNAs. We develop a software module, within a larger package (tFind) aimed at mapping bacterial tRNA and tmRNA genes precisely, that expands this list of four known classes of intron-interrupted tRNAs to 21 cases. A new covariance model for these introns is presented. The wobble base pair formed by the -1 uridine is considered a determinant of the 5-prime splice site, yet one reasonably large new type bears a cytidine nucleotide at that position.

Nature ◽  
1990 ◽  
Vol 344 (6261) ◽  
pp. 80-82 ◽  
Author(s):  
John M. Burke ◽  
Joseph S. Esherick ◽  
William R. Burfeind ◽  
Judith L. King

2002 ◽  
Vol 184 (14) ◽  
pp. 3917-3922 ◽  
Author(s):  
Minsu Ko ◽  
Hyang Choi ◽  
Chankyu Park

ABSTRACT Self-splicing introns are rarely found in bacteria and bacteriophages. They are classified into group I and II according to their structural features and splicing mechanisms. While the group I introns are occasionally found in protein-coding regions of phage genomes and in several tRNA genes of cyanobacteria and proteobacteria, they had not been found in protein-coding regions of bacterial genomes. Here we report a group I intron in the recA gene of Bacillus anthracis which was initially found by DNA sequencing as an intervening sequence (IVS). By using reverse transcriptase PCR, the IVS was shown to be removable from the recA precursor mRNA for RecA that was being translated in E. coli. The splicing was visualized in vitro with labeled free GTP, indicating that it is a group I intron, which is also implied by its predicted secondary structure. The RecA protein of B. anthracis expressed in E. coli was functional in its ability to complement a recA defect. When recA-negative E. coli cells were irradiated with UV, the Bacillus RecA reduced the UV susceptibility of the recA mutant, regardless of the presence of intron.


1989 ◽  
Vol 9 (12) ◽  
pp. 5424-5433 ◽  
Author(s):  
A Gampel ◽  
M Nishikimi ◽  
A Tzagoloff

The terminal intron (bI2) of the yeast mitochondrial cytochrome b gene is a group I intron capable of self-splicing in vitro at high concentrations of Mg2+. Excision of bI2 in vivo, however, requires a protein encoded by the nuclear gene CBP2. The CBP2 protein has been partially purified from wild-type yeast mitochondria and shown to promote splicing at physiological concentrations of Mg2+. The self-splicing and protein-dependent splicing reactions utilized a guanosine nucleoside cofactor, the hallmark of group I intron self-splicing reactions. Furthermore, mutations that abolished the autocatalytic activity of bI2 also blocked protein-dependent splicing. These results indicated that protein-dependent excision of bI2 is an RNA-catalyzed process involving the same two-step transesterification mechanism responsible for self-splicing of group I introns. We propose that the CBP2 protein binds to the bI2 precursor, thereby stabilizing the catalytically active structure of the RNA. The same or a similar RNA structure is probably induced by high concentrations of Mg2+ in the absence of protein. Binding of the CBP2 protein to the unspliced precursor was supported by the observation that the protein-dependent reaction was saturable by the wild-type precursor. Protein-dependent splicing was competitively inhibited by excised bI2 and by a splicing-defective precursor with a mutation in the 5' exon near the splice site but not by a splicing-defective precursor with a mutation in the core structure. Binding of the CBP2 protein to the precursor RNA had an effect on the 5' splice site helix, as evidenced by suppression of the interaction of an exogenous dinucleotide with the internal guide sequence.


1989 ◽  
Vol 9 (12) ◽  
pp. 5424-5433
Author(s):  
A Gampel ◽  
M Nishikimi ◽  
A Tzagoloff

The terminal intron (bI2) of the yeast mitochondrial cytochrome b gene is a group I intron capable of self-splicing in vitro at high concentrations of Mg2+. Excision of bI2 in vivo, however, requires a protein encoded by the nuclear gene CBP2. The CBP2 protein has been partially purified from wild-type yeast mitochondria and shown to promote splicing at physiological concentrations of Mg2+. The self-splicing and protein-dependent splicing reactions utilized a guanosine nucleoside cofactor, the hallmark of group I intron self-splicing reactions. Furthermore, mutations that abolished the autocatalytic activity of bI2 also blocked protein-dependent splicing. These results indicated that protein-dependent excision of bI2 is an RNA-catalyzed process involving the same two-step transesterification mechanism responsible for self-splicing of group I introns. We propose that the CBP2 protein binds to the bI2 precursor, thereby stabilizing the catalytically active structure of the RNA. The same or a similar RNA structure is probably induced by high concentrations of Mg2+ in the absence of protein. Binding of the CBP2 protein to the unspliced precursor was supported by the observation that the protein-dependent reaction was saturable by the wild-type precursor. Protein-dependent splicing was competitively inhibited by excised bI2 and by a splicing-defective precursor with a mutation in the 5' exon near the splice site but not by a splicing-defective precursor with a mutation in the core structure. Binding of the CBP2 protein to the precursor RNA had an effect on the 5' splice site helix, as evidenced by suppression of the interaction of an exogenous dinucleotide with the internal guide sequence.


1992 ◽  
Vol 6 (8) ◽  
pp. 1373-1385 ◽  
Author(s):  
F Michel ◽  
L Jaeger ◽  
E Westhof ◽  
R Kuras ◽  
F Tihy ◽  
...  

2009 ◽  
Vol 191 (12) ◽  
pp. 4044-4046 ◽  
Author(s):  
Rahul Raghavan ◽  
Linda D. Hicks ◽  
Michael F. Minnick

ABSTRACT Cbu.L1917, a group I intron present in the 23S rRNA gene of Coxiella burnetii, possesses a unique 3′-terminal adenine in place of a conserved guanine. Here, we show that, unlike all other group I introns, Cbu.L1917 utilizes a different cofactor for each splicing step and has a decreased self-splicing rate in vitro.


Sign in / Sign up

Export Citation Format

Share Document