scholarly journals Epigenome-based Splicing Prediction using a Recurrent Neural Network

2020 ◽  
Author(s):  
Donghoon Lee ◽  
Jing Zhang ◽  
Jason Liu ◽  
Mark B Gerstein

AbstractAlternative RNA splicing provides an important means to expand metazoan transcriptome diversity. Contrary to what was accepted previously, splicing is now thought to predominantly take place during transcription. Motivated by emerging data showing the physical proximity of the spliceosome to Pol II, we surveyed the effect of epigenetic context on co-transcriptional splicing. In particular, we observed that splicing factors were not necessarily enriched at exon junctions and that most epigenetic signatures had a distinctly asymmetric profile around known splice sites. Given this, we tried to build an interpretable model that mimics the physical layout of splicing regulation where the chromatin context progressively changes as the Pol II moves along the guide DNA. We used a recurrent-neural-network architecture to predict the inclusion of a spliced exon based on adjacent epigenetic signals, and we showed that distinct spatio-temporal features of these signals were key determinants of model outcome, in addition to the actual nucleotide sequence of the guide DNA strand. After the model had been trained and tested (with >80% precision-recall curve metric), we explored the derived weights of the latent factors, finding they highlight the importance of the asymmetric time-direction of chromatin context during transcription.Author SummaryIn humans, only about 2% of the genome is comprised of so-called coding regions and can give rise to protein products. However, the human transcriptome is much more diverse than the number of genes found in these coding regions. Each gene can give rise to multiple transcripts through a process during transcription called alternative splicing. There is a limited understanding of the regulation of splicing and the underlying splicing code that determines cell-type-specific splicing. Here, we studied epigenetic features that characterize splicing regulation in humans using a recurrent neural network model. Unlike feedforward neural networks, this method contains an internal memory state that learns from spatiotemporal patterns – like the context in language – from a sequence of genomic and epigenetic information, making it better suited for characterizing splicing. We demonstrated that our method improves the prediction of spicing outcomes compared to previous methods. Furthermore, we applied our method to 49 cell types in ENCODE to investigate splicing regulation and found that not only spatial but also temporal epigenomic context can influence splicing regulation during transcription.

1998 ◽  
Vol 10 (1) ◽  
pp. 165-188 ◽  
Author(s):  
Andrew D. Back ◽  
Ah Chung Tsoi

The problem of high sensitivity in modeling is well known. Small perturbations in the model parameters may result in large, undesired changes in the model behavior. A number of authors have considered the issue of sensitivity in feedforward neural networks from a probabilistic perspective. Less attention has been given to such issues in recurrent neural networks. In this article, we present a new recurrent neural network architecture, that is capable of significantly improved parameter sensitivity properties compared to existing recurrent neural networks. The new recurrent neural network generalizes previous architectures by employing alternative discrete-time operators in place of the shift operator normally used. An analysis of the model demonstrates the existence of parameter sensitivity in recurrent neural networks and supports the proposed architecture. The new architecture performs significantly better than previous recurrent neural networks, as shown by a series of simple numerical experiments.


Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4411 ◽  
Author(s):  
Jehyeok Rew ◽  
Sungwoo Park ◽  
Yongjang Cho ◽  
Seungwon Jung ◽  
Eenjun Hwang

Observing animal movements enables us to understand animal behavior changes, such as migration, interaction, foraging, and nesting. Based on spatiotemporal changes in weather and season, animals instinctively change their position for foraging, nesting, or breeding. It is known that moving patterns are closely related to their traits. Analyzing and predicting animals’ movement patterns according to spatiotemporal change offers an opportunity to understand their unique traits and acquire ecological insights into animals. Hence, in this paper, we propose an animal movement prediction scheme using a predictive recurrent neural network architecture. To do that, we first collect and investigate geo records of animals and conduct pattern refinement by using random forest interpolation. Then, we generate animal movement patterns using the kernel density estimation and build a predictive recurrent neural network model to consider the spatiotemporal changes. In the experiment, we perform various predictions using 14 K long-billed curlew locations that contain their five-year movements of the breeding, non-breeding, pre-breeding, and post-breeding seasons. The experimental results confirm that our predictive model based on recurrent neural networks can be effectively used to predict animal movement.


2017 ◽  
Author(s):  
Joe Paggi ◽  
Andrew Lamb ◽  
Kevin Tian ◽  
Irving Hsu ◽  
Pierre-Louis Cedoz ◽  
...  

AbstractMassively parallel reporter assays (MPRAs) are a method to probe the effects of short sequences on transcriptional regulation activity. In a MPRA, short sequences are extracted from suspected regulatory regions, inserted into reporter plasmids, transfected into cell-types of interest, and the transcriptional activity of each reporter is assayed. Recently, Ernst et al. presented MPRA data covering 15750 putative regulatory regions. We trained a multitask convolutional neural network architecture using these sequence expression readouts which predicts as output the expression level outputs across four combinations of cell types and promoters. The model allows for the assigning of importance scores to each base through in silico mutagenesis, and the resulting importance scores correlated well with regions enriched for conservation and transcription factor binding.


Sign in / Sign up

Export Citation Format

Share Document