scholarly journals Animal Movement Prediction Based on Predictive Recurrent Neural Network

Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4411 ◽  
Author(s):  
Jehyeok Rew ◽  
Sungwoo Park ◽  
Yongjang Cho ◽  
Seungwon Jung ◽  
Eenjun Hwang

Observing animal movements enables us to understand animal behavior changes, such as migration, interaction, foraging, and nesting. Based on spatiotemporal changes in weather and season, animals instinctively change their position for foraging, nesting, or breeding. It is known that moving patterns are closely related to their traits. Analyzing and predicting animals’ movement patterns according to spatiotemporal change offers an opportunity to understand their unique traits and acquire ecological insights into animals. Hence, in this paper, we propose an animal movement prediction scheme using a predictive recurrent neural network architecture. To do that, we first collect and investigate geo records of animals and conduct pattern refinement by using random forest interpolation. Then, we generate animal movement patterns using the kernel density estimation and build a predictive recurrent neural network model to consider the spatiotemporal changes. In the experiment, we perform various predictions using 14 K long-billed curlew locations that contain their five-year movements of the breeding, non-breeding, pre-breeding, and post-breeding seasons. The experimental results confirm that our predictive model based on recurrent neural networks can be effectively used to predict animal movement.

Author(s):  
Fatma Gumus ◽  
Derya Yiltas-Kaplan

Software Defined Network (SDN) is a programmable network architecture that provides innovative solutions to the problems of the traditional networks. Congestion control is still an uncharted territory for this technology. In this work, a congestion prediction scheme has been developed by using neural networks. Minimum Redundancy Maximum Relevance (mRMR) feature selection algorithm was performed on the data collected from the OMNET++ simulation. The novelty of this study also covers the implementation of mRMR in an SDN congestion prediction problem. After evaluating the relevance scores, two highest ranking features were used. On the learning stage Nonlinear Autoregressive Exogenous Neural Network (NARX), Nonlinear Autoregressive Neural Network, and Nonlinear Feedforward Neural Network algorithms were executed. These algorithms had not been used before in SDNs according to the best of the authors knowledge. The experiments represented that NARX was the best prediction algorithm. This machine learning approach can be easily integrated to different topologies and application areas.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Daniel Griffith ◽  
Alex S Holehouse

The rise of high-throughput experiments has transformed how scientists approach biological questions. The ubiquity of large-scale assays that can test thousands of samples in a day has necessitated the development of new computational approaches to interpret this data. Among these tools, machine learning approaches are increasingly being utilized due to their ability to infer complex nonlinear patterns from high-dimensional data. Despite their effectiveness, machine learning (and in particular deep learning) approaches are not always accessible or easy to implement for those with limited computational expertise. Here we present PARROT, a general framework for training and applying deep learning-based predictors on large protein datasets. Using an internal recurrent neural network architecture, PARROT is capable of tackling both classification and regression tasks while only requiring raw protein sequences as input. We showcase the potential uses of PARROT on three diverse machine learning tasks: predicting phosphorylation sites, predicting transcriptional activation function of peptides generated by high-throughput reporter assays, and predicting the fibrillization propensity of amyloid beta with data generated by deep mutational scanning. Through these examples, we demonstrate that PARROT is easy to use, performs comparably to state-of-the-art computational tools, and is applicable for a wide array of biological problems.


Sign in / Sign up

Export Citation Format

Share Document