scholarly journals Differential Impacts on Host Transcription by ROP and GRA Effectors from the Intracellular Parasite Toxoplasma gondii

2020 ◽  
Author(s):  
Suchita Rastogi ◽  
Yuan Xue ◽  
Stephen R. Quake ◽  
John C. Boothroyd

ABSTRACTThe intracellular parasite Toxoplasma gondii employs a vast array of effector proteins from the rhoptry and dense granule organelles to modulate host cell biology; these effectors are known as ROPs and GRAs, respectively. To examine the individual impacts of ROPs and GRAs on host gene expression, we developed a robust, novel protocol to enrich for ultra-pure populations of a naturally occurring and reproducible population of host cells called uninfected-injected (U-I) cells, which Toxoplasma injects with ROPs but subsequently fails to invade. We then performed single cell transcriptomic analysis at 1-3 hours post-infection on U-I cells (as well as on uninfected and infected controls) arising from infection with either wild type parasites or parasites lacking the MYR1 protein, which is required for soluble GRAs to cross the parasitophorous vacuole membrane (PVM) and reach the host cell cytosol. Based on comparisons of infected and U-I cells, the host’s earliest response to infection appears to be driven primarily by the injected ROPs, which appear to induce immune and cellular stress pathways. These ROP-dependent pro-inflammatory signatures appear to be counteracted by at least some of the MYR1-dependent GRAs and may be enhanced by the MYR-independent GRAs, (which are found embedded within the PVM). Finally, signatures detected in uninfected bystander cells from the infected monolayers suggests that MYR1-dependent paracrine effects also counteract inflammatory ROP-dependent processes.IMPORTANCEThis work performs the first transcriptomic analysis of U-I cells, captures the earliest stage of a host cell’s interaction with Toxoplasma gondii, and dissects the effects of individual classes of parasite effectors on host cell biology.

mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Suchita Rastogi ◽  
Yuan Xue ◽  
Stephen R. Quake ◽  
John C. Boothroyd

ABSTRACT The intracellular parasite Toxoplasma gondii employs a vast array of effector proteins from the rhoptry and dense granule organelles to modulate host cell biology; these effectors are known as ROPs and GRAs, respectively. To examine the individual impacts of ROPs and GRAs on host gene expression, we developed a robust, novel protocol to enrich for ultrapure populations of a naturally occurring and reproducible population of host cells called uninfected-injected (U-I) cells, which Toxoplasma injects with ROPs but subsequently fails to invade. We then performed single-cell transcriptomic analysis at 1 to 3 h postinfection on U-I cells (as well as on uninfected and infected controls) arising from infection with either wild-type parasites or parasites lacking the MYR1 protein, which is required for soluble GRAs to cross the parasitophorous vacuole membrane (PVM) and reach the host cell cytosol. Based on comparisons of infected and U-I cells, the host’s earliest response to infection appears to be driven primarily by the injected ROPs, which appear to induce immune and cellular stress pathways. These ROP-dependent proinflammatory signatures appear to be counteracted by at least some of the MYR1-dependent GRAs and may be enhanced by the MYR-independent GRAs (which are found embedded within the PVM). Finally, signatures detected in uninfected bystander cells from the infected monolayers suggest that MYR1-dependent paracrine effects also counteract inflammatory ROP-dependent processes. IMPORTANCE This work performs transcriptomic analysis of U-I cells, captures the earliest stage of a host cell’s interaction with Toxoplasma gondii, and dissects the effects of individual classes of parasite effectors on host cell biology.


mSphere ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Alicja M. Cygan ◽  
Terence C. Theisen ◽  
Alma G. Mendoza ◽  
Nicole D. Marino ◽  
Michael W. Panas ◽  
...  

ABSTRACT Toxoplasma gondii is a ubiquitous, intracellular protozoan that extensively modifies infected host cells through secreted effector proteins. Many such effectors must be translocated across the parasitophorous vacuole (PV), in which the parasites replicate, ultimately ending up in the host cytosol or nucleus. This translocation has previously been shown to be dependent on five parasite proteins: MYR1, MYR2, MYR3, ROP17, and ASP5. We report here the identification of several MYR1-interacting and novel PV-localized proteins via affinity purification of MYR1, including TGGT1_211460 (dubbed MYR4), TGGT1_204340 (dubbed GRA54), and TGGT1_270320 (PPM3C). Further, we show that three of the MYR1-interacting proteins, GRA44, GRA45, and MYR4, are essential for the translocation of the Toxoplasma effector protein GRA16 and for the upregulation of human c-Myc and cyclin E1 in infected cells. GRA44 and GRA45 contain ASP5 processing motifs, but like MYR1, processing at these sites appears to be nonessential for their role in protein translocation. These results expand our understanding of the mechanism of effector translocation in Toxoplasma and indicate that the process is highly complex and dependent on at least eight discrete proteins. IMPORTANCE Toxoplasma is an extremely successful intracellular parasite and important human pathogen. Upon infection of a new cell, Toxoplasma establishes a replicative vacuole and translocates parasite effectors across this vacuole to function from the host cytosol and nucleus. These effectors play a key role in parasite virulence. The work reported here newly identifies three parasite proteins that are necessary for protein translocation into the host cell. These results significantly increase our knowledge of the molecular players involved in protein translocation in Toxoplasma-infected cells and provide additional potential drug targets.


mBio ◽  
2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Magdalena Franco ◽  
Michael W. Panas ◽  
Nicole D. Marino ◽  
Mei-Chong Wendy Lee ◽  
Kerry R. Buchholz ◽  
...  

ABSTRACT The intracellular protozoan Toxoplasma gondii dramatically reprograms the transcriptome of host cells it infects, including substantially up-regulating the host oncogene c -myc . By applying a flow cytometry-based selection to infected mouse cells expressing green fluorescent protein fused to c-Myc (c-Myc–GFP), we isolated mutant tachyzoites defective in this host c-Myc up-regulation. Whole-genome sequencing of three such mutants led to the identification of MYR1 ( My c r egulation 1 ; TGGT1_254470 ) as essential for c-Myc induction. MYR1 is a secreted protein that requires TgASP5 to be cleaved into two stable portions, both of which are ultimately found within the parasitophorous vacuole and at the parasitophorous vacuole membrane. Deletion of MYR1 revealed that in addition to its requirement for c-Myc up-regulation, the MYR1 protein is needed for the ability of Toxoplasma tachyzoites to modulate several other important host pathways, including those mediated by the dense granule effectors GRA16 and GRA24. This result, combined with its location at the parasitophorous vacuole membrane, suggested that MYR1 might be a component of the machinery that translocates Toxoplasma effectors from the parasitophorous vacuole into the host cytosol. Support for this possibility was obtained by showing that transit of GRA24 to the host nucleus is indeed MYR1-dependent. As predicted by this pleiotropic phenotype, parasites deficient in MYR1 were found to be severely attenuated in a mouse model of infection. We conclude, therefore, that MYR1 is a novel protein that plays a critical role in how Toxoplasma delivers effector proteins to the infected host cell and that this is crucial to virulence. IMPORTANCE Toxoplasma gondii is an important human pathogen and a model for the study of intracellular parasitism. Infection of the host cell with Toxoplasma tachyzoites involves the introduction of protein effectors, including many that are initially secreted into the parasitophorous vacuole but must ultimately translocate to the host cell cytosol to function. The work reported here identified a novel protein that is required for this translocation. These results give new insight into a very unusual cell biology process as well as providing a potential handle on a pathway that is necessary for virulence and, therefore, a new potential target for chemotherapy.


2008 ◽  
Vol 76 (12) ◽  
pp. 5853-5861 ◽  
Author(s):  
Joe Dan Dunn ◽  
Sandeep Ravindran ◽  
Seon-Kyeong Kim ◽  
John C. Boothroyd

ABSTRACT The obligate intracellular parasite Toxoplasma gondii infects warm-blooded animals throughout the world and is an opportunistic pathogen of humans. As it invades a host cell, Toxoplasma forms a novel organelle, the parasitophorous vacuole, in which it resides during its intracellular development. The parasite modifies the parasitophorous vacuole and its host cell with numerous proteins delivered from rhoptries and dense granules, which are secretory organelles unique to the phylum Apicomplexa. For the majority of these proteins, little is known other than their localization. Here we show that the dense granule protein GRA7 is phosphorylated but only in the presence of host cells. Within 10 min of invasion, GRA7 is present in strand-like structures in the host cytosol that contain rhoptry proteins. GRA7 strands also contain GRA1 and GRA3. Independently of its phosphorylation state, GRA7 associates with the rhoptry proteins ROP2 and ROP4 in infected host cells. This is the first report of interactions between proteins secreted from rhoptries and dense granules.


2002 ◽  
Vol 115 (15) ◽  
pp. 3049-3059 ◽  
Author(s):  
Audra J. Charron ◽  
L. David Sibley

Successful replication of the intracellular parasite Toxoplasma gondii within its parasitophorous vacuole necessitates a substantial increase in membrane mass. The possible diversion and metabolism of host cell lipids and lipid precursors by Toxoplasma was therefore investigated using radioisotopic and fluorophore-conjugated compounds. Confocal microscopic analyses demonstrated that Toxoplasma is selective with regards to both the acquisition and compartmentalization of host cell lipids. Lipids were compartmentalized into parasite endomembranes and, in some cases, were apparently integrated into the surrounding vacuolar membrane. Additionally,some labels became concentrated in discrete lipid bodies that were biochemically and morphologically distinct from the parasite apical secretory organelles. Thin layer chromatography established that parasites readily scavenged long-chain fatty acids as well as cholesterol, and in certain cases modified the host-derived lipids. When provided with radiolabeled phospholipid precursors, including polar head groups, phosphatidic acid and small fatty acids, intracellular parasites preferentially accrued phosphatidylcholine(PtdCho) over other phospholipids. Moreover, Toxoplasma was found to be competent to synthesize PtdCho from radiolabeled precursors obtained from its environment. Together, these studies underscore the ability of Toxoplasma gondii to divert and use lipid resources from its host, a process that may contribute to the biogenesis of parasite membranes.


mBio ◽  
2018 ◽  
Vol 9 (2) ◽  
Author(s):  
Adit Naor ◽  
Michael W. Panas ◽  
Nicole Marino ◽  
Michael J. Coffey ◽  
Christopher J. Tonkin ◽  
...  

ABSTRACT The obligate intracellular parasite Toxoplasma gondii controls its host cell from within the parasitophorous vacuole (PV) by using a number of diverse effector proteins, a subset of which require the aspartyl protease 5 enzyme (ASP5) and/or the recently discovered MYR1 protein to cross the PV membrane. To examine the impact these effectors have in the context of the entirety of the host response to Toxoplasma , we used RNA-Seq to analyze the transcriptome expression profiles of human foreskin fibroblasts infected with wild-type RH (RH-WT), RHΔ myr1 , and RHΔ asp5 tachyzoites. Interestingly, the majority of the differentially regulated genes responding to Toxoplasma infection are MYR1 dependent. A subset of MYR1 responses were ASP5 independent, and MYR1 function did not require ASP5 cleavage, suggesting the export of some effectors requires only MYR1. Gene set enrichment analysis of MYR1-dependent host responses suggests an upregulation of E2F transcription factors and the cell cycle and a downregulation related to interferon signaling, among numerous others. Most surprisingly, “hidden” responses arising in RHΔ myr1 - but not RH-WT-infected host cells indicate counterbalancing actions of MYR1-dependent and -independent activities. The host genes and gene sets revealed here to be MYR1 dependent provide new insight into the parasite’s ability to co-opt host cell functions. IMPORTANCE Toxoplasma gondii is unique in its ability to successfully invade and replicate in a broad range of host species and cells within those hosts. The complex interplay of effector proteins exported by Toxoplasma is key to its success in co-opting the host cell to create a favorable replicative niche. Here we show that a majority of the transcriptomic effects in tachyzoite-infected cells depend on the activity of a novel translocation system involving MYR1 and that the effectors delivered by this system are part of an intricate interplay of activators and suppressors. Removal of all MYR1-dependent effectors reveals previously unknown activities that are masked or hidden by the action of these proteins.


1997 ◽  
Vol 110 (17) ◽  
pp. 2117-2128 ◽  
Author(s):  
A.P. Sinai ◽  
P. Webster ◽  
K.A. Joiner

The parasitophorous vacuole membrane (PVM) of the obligate intracellular protozoan parasite Toxoplasma gondii forms tight associations with host mitochondria and the endoplasmic reticulum (ER). We have used a combination of morphometric and biochemical approaches to characterize this unique phenomenon, which we term PVM-organelle association. The PVM is separated from associated mitochondria and ER by a mean distance of 12 and 18 nm, respectively. The establishment of PVM-organelle association is dependent on active parasite entry, but does not require parasite viability for its maintenance. Association is not a consequence of spatial constraints imposed on the growing vacuole. Morphometric analysis indicates that the extent of mitochondrial association with the PVM stays constant as the vacuole enlarges, whereas the extent of ER association decreases. Disruption of host cell microtubules partially blocks the establishment but not the maintenance of PVM-mitochondrial association, and has no significant effect on PVM-ER association. PVM-organelle association is maintained following disruption of infected host cells, as assessed by electron microscopy and by sub-cellular fractionation showing co-migration of fixed PVM and organelle markers. Taken together, the data suggest that a high affinity, potentially protein-protein interaction between parasite and organelle components is responsible for PVM-organelle association.


2017 ◽  
Vol 38 (3) ◽  
pp. 112
Author(s):  
Joshua PM Newson

The bacterium Salmonella causes a spectrum of foodborne diseases ranging from acute gastroenteritis to systemic infections, and represents a significant burden of disease globally. In Australia, Salmonella is frequently associated with outbreaks and is a leading cause of foodborne illness, which results in a significant medical and economic burden. Salmonella infection involves colonisation of the small intestine, where the bacteria invades host cells and establishes an intracellular infection. To survive within host cells, Salmonella employs type-three secretion systems to deliver bacterial effector proteins into the cytoplasm of host cells. These bacterial effectors seek out and modify specific host proteins, disrupting host processes such as cell signalling, intracellular trafficking, and programmed cell death. This strategy of impairing host cells allows Salmonella to establish a replicative niche within the cell, where they can replicate to high numbers before escaping to infect neighbouring cells, or be transmitted to new hosts. While the importance of effector protein translocation to infection is well established, our understanding of many effector proteins remains incomplete. Many Salmonella effectors have unknown function and unknown roles during infection. A greater understanding of how Salmonella manipulates host cells during infection will lead to improved strategies to prevent, control, and eliminate disease. Further, studying effector proteins can be a useful means for exploring host cell biology and elucidating the details of host cell signalling.


Parasitology ◽  
2014 ◽  
Vol 141 (11) ◽  
pp. 1436-1454 ◽  
Author(s):  
RITA CARDOSO ◽  
SOFIA NOLASCO ◽  
JOÃO GONÇALVES ◽  
HELDER C. CORTES ◽  
ALEXANDRE LEITÃO ◽  
...  

SUMMARYBesnoitia besnoiti and Toxoplasma gondii are two closely related parasites that interact with the host cell microtubule cytoskeleton during host cell invasion. Here we studied the relationship between the ability of these parasites to invade and to recruit the host cell centrosome and the Golgi apparatus. We observed that T. gondii recruits the host cell centrosome towards the parasitophorous vacuole (PV), whereas B. besnoiti does not. Notably, both parasites recruit the host Golgi apparatus to the PV but its organization is affected in different ways. We also investigated the impact of depleting and over-expressing the host centrosomal protein TBCCD1, involved in centrosome positioning and Golgi apparatus integrity, on the ability of these parasites to invade and replicate. Toxoplasma gondii replication rate decreases in cells over-expressing TBCCD1 but not in TBCCD1-depleted cells; while for B. besnoiti no differences were found. However, B. besnoiti promotes a reorganization of the Golgi ribbon previously fragmented by TBCCD1 depletion. These results suggest that successful establishment of PVs in the host cell requires modulation of the Golgi apparatus which probably involves modifications in microtubule cytoskeleton organization and dynamics. These differences in how T. gondii and B. besnoiti interact with their host cells may indicate different evolutionary paths.


2021 ◽  
Vol 118 (12) ◽  
pp. e2013336118
Author(s):  
Matthew L. Blank ◽  
Jing Xia ◽  
Mary M. Morcos ◽  
Mai Sun ◽  
Pamela S. Cantrell ◽  
...  

Host mitochondrial association (HMA) is a well-known phenomenon duringToxoplasma gondiiinfection of the host cell. TheT. gondiilocusmitochondrial association factor 1(MAF1) is required for HMA andMAF1encodes distinct paralogs of secreted dense granule effector proteins, some of which mediate the HMA phenotype (MAF1b paralogs drive HMA; MAF1a paralogs do not). To identify host proteins required for MAF1b-mediated HMA, we performed unbiased, label-free quantitative proteomics on host cells infected with type II parasites expressing MAF1b, MAF1a, and an HMA-incompetent MAF1b mutant. Across these samples, we identified ∼1,360 MAF1-interacting proteins, but only 13 that were significantly and uniquely enriched in MAF1b pull-downs. The gene products include multiple mitochondria-associated proteins, including those that traffic to the mitochondrial outer membrane. Based on follow-up endoribonuclease-prepared short interfering RNA (esiRNA) experiments targeting these candidate MAF1b-targeted host factors, we determined that the mitochondrial receptor protein TOM70 and mitochondria-specific chaperone HSPA9 were essential mediators of HMA. Additionally, the enrichment of TOM70 at the parasitophorous vacuole membrane interface suggests parasite-driven sequestration of TOM70 by the parasite. These results show that the interface between theT. gondiivacuole and the host mitochondria is characterized by interactions between a single parasite effector and multiple target host proteins, some of which are critical for the HMA phenotype itself. The elucidation of the functional members of this complex will permit us to explain the link between HMA and changes in the biology of the host cell.


Sign in / Sign up

Export Citation Format

Share Document