scholarly journals Differential Impacts on Host Transcription by ROP and GRA Effectors from the Intracellular Parasite Toxoplasma gondii

mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Suchita Rastogi ◽  
Yuan Xue ◽  
Stephen R. Quake ◽  
John C. Boothroyd

ABSTRACT The intracellular parasite Toxoplasma gondii employs a vast array of effector proteins from the rhoptry and dense granule organelles to modulate host cell biology; these effectors are known as ROPs and GRAs, respectively. To examine the individual impacts of ROPs and GRAs on host gene expression, we developed a robust, novel protocol to enrich for ultrapure populations of a naturally occurring and reproducible population of host cells called uninfected-injected (U-I) cells, which Toxoplasma injects with ROPs but subsequently fails to invade. We then performed single-cell transcriptomic analysis at 1 to 3 h postinfection on U-I cells (as well as on uninfected and infected controls) arising from infection with either wild-type parasites or parasites lacking the MYR1 protein, which is required for soluble GRAs to cross the parasitophorous vacuole membrane (PVM) and reach the host cell cytosol. Based on comparisons of infected and U-I cells, the host’s earliest response to infection appears to be driven primarily by the injected ROPs, which appear to induce immune and cellular stress pathways. These ROP-dependent proinflammatory signatures appear to be counteracted by at least some of the MYR1-dependent GRAs and may be enhanced by the MYR-independent GRAs (which are found embedded within the PVM). Finally, signatures detected in uninfected bystander cells from the infected monolayers suggest that MYR1-dependent paracrine effects also counteract inflammatory ROP-dependent processes. IMPORTANCE This work performs transcriptomic analysis of U-I cells, captures the earliest stage of a host cell’s interaction with Toxoplasma gondii, and dissects the effects of individual classes of parasite effectors on host cell biology.

2020 ◽  
Author(s):  
Suchita Rastogi ◽  
Yuan Xue ◽  
Stephen R. Quake ◽  
John C. Boothroyd

ABSTRACTThe intracellular parasite Toxoplasma gondii employs a vast array of effector proteins from the rhoptry and dense granule organelles to modulate host cell biology; these effectors are known as ROPs and GRAs, respectively. To examine the individual impacts of ROPs and GRAs on host gene expression, we developed a robust, novel protocol to enrich for ultra-pure populations of a naturally occurring and reproducible population of host cells called uninfected-injected (U-I) cells, which Toxoplasma injects with ROPs but subsequently fails to invade. We then performed single cell transcriptomic analysis at 1-3 hours post-infection on U-I cells (as well as on uninfected and infected controls) arising from infection with either wild type parasites or parasites lacking the MYR1 protein, which is required for soluble GRAs to cross the parasitophorous vacuole membrane (PVM) and reach the host cell cytosol. Based on comparisons of infected and U-I cells, the host’s earliest response to infection appears to be driven primarily by the injected ROPs, which appear to induce immune and cellular stress pathways. These ROP-dependent pro-inflammatory signatures appear to be counteracted by at least some of the MYR1-dependent GRAs and may be enhanced by the MYR-independent GRAs, (which are found embedded within the PVM). Finally, signatures detected in uninfected bystander cells from the infected monolayers suggests that MYR1-dependent paracrine effects also counteract inflammatory ROP-dependent processes.IMPORTANCEThis work performs the first transcriptomic analysis of U-I cells, captures the earliest stage of a host cell’s interaction with Toxoplasma gondii, and dissects the effects of individual classes of parasite effectors on host cell biology.


mBio ◽  
2018 ◽  
Vol 9 (2) ◽  
Author(s):  
Adit Naor ◽  
Michael W. Panas ◽  
Nicole Marino ◽  
Michael J. Coffey ◽  
Christopher J. Tonkin ◽  
...  

ABSTRACT The obligate intracellular parasite Toxoplasma gondii controls its host cell from within the parasitophorous vacuole (PV) by using a number of diverse effector proteins, a subset of which require the aspartyl protease 5 enzyme (ASP5) and/or the recently discovered MYR1 protein to cross the PV membrane. To examine the impact these effectors have in the context of the entirety of the host response to Toxoplasma , we used RNA-Seq to analyze the transcriptome expression profiles of human foreskin fibroblasts infected with wild-type RH (RH-WT), RHΔ myr1 , and RHΔ asp5 tachyzoites. Interestingly, the majority of the differentially regulated genes responding to Toxoplasma infection are MYR1 dependent. A subset of MYR1 responses were ASP5 independent, and MYR1 function did not require ASP5 cleavage, suggesting the export of some effectors requires only MYR1. Gene set enrichment analysis of MYR1-dependent host responses suggests an upregulation of E2F transcription factors and the cell cycle and a downregulation related to interferon signaling, among numerous others. Most surprisingly, “hidden” responses arising in RHΔ myr1 - but not RH-WT-infected host cells indicate counterbalancing actions of MYR1-dependent and -independent activities. The host genes and gene sets revealed here to be MYR1 dependent provide new insight into the parasite’s ability to co-opt host cell functions. IMPORTANCE Toxoplasma gondii is unique in its ability to successfully invade and replicate in a broad range of host species and cells within those hosts. The complex interplay of effector proteins exported by Toxoplasma is key to its success in co-opting the host cell to create a favorable replicative niche. Here we show that a majority of the transcriptomic effects in tachyzoite-infected cells depend on the activity of a novel translocation system involving MYR1 and that the effectors delivered by this system are part of an intricate interplay of activators and suppressors. Removal of all MYR1-dependent effectors reveals previously unknown activities that are masked or hidden by the action of these proteins.


mSphere ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Alicja M. Cygan ◽  
Terence C. Theisen ◽  
Alma G. Mendoza ◽  
Nicole D. Marino ◽  
Michael W. Panas ◽  
...  

ABSTRACT Toxoplasma gondii is a ubiquitous, intracellular protozoan that extensively modifies infected host cells through secreted effector proteins. Many such effectors must be translocated across the parasitophorous vacuole (PV), in which the parasites replicate, ultimately ending up in the host cytosol or nucleus. This translocation has previously been shown to be dependent on five parasite proteins: MYR1, MYR2, MYR3, ROP17, and ASP5. We report here the identification of several MYR1-interacting and novel PV-localized proteins via affinity purification of MYR1, including TGGT1_211460 (dubbed MYR4), TGGT1_204340 (dubbed GRA54), and TGGT1_270320 (PPM3C). Further, we show that three of the MYR1-interacting proteins, GRA44, GRA45, and MYR4, are essential for the translocation of the Toxoplasma effector protein GRA16 and for the upregulation of human c-Myc and cyclin E1 in infected cells. GRA44 and GRA45 contain ASP5 processing motifs, but like MYR1, processing at these sites appears to be nonessential for their role in protein translocation. These results expand our understanding of the mechanism of effector translocation in Toxoplasma and indicate that the process is highly complex and dependent on at least eight discrete proteins. IMPORTANCE Toxoplasma is an extremely successful intracellular parasite and important human pathogen. Upon infection of a new cell, Toxoplasma establishes a replicative vacuole and translocates parasite effectors across this vacuole to function from the host cytosol and nucleus. These effectors play a key role in parasite virulence. The work reported here newly identifies three parasite proteins that are necessary for protein translocation into the host cell. These results significantly increase our knowledge of the molecular players involved in protein translocation in Toxoplasma-infected cells and provide additional potential drug targets.


2011 ◽  
Vol 80 (2) ◽  
pp. 476-482 ◽  
Author(s):  
Eric Y. Denkers ◽  
David J. Bzik ◽  
Barbara A. Fox ◽  
Barbara A. Butcher

ABSTRACTThe intracellular protozoanToxoplasma gondiiis well known for its skill at invading and living within host cells. New discoveries are now also revealing the astounding ability of the parasite to inject effector proteins into the cytoplasm to seize control of the host cell. This review summarizes recent advances in our understanding of one such secretory protein called ROP16. This molecule is released from rhoptries into the host cell during invasion. The ROP16 molecule acts as a kinase, directly activating both signal transducer and activator of transcription 3 (STAT3) and STAT6 signaling pathways. In macrophages, an important and preferential target cell of parasite infection, the injection of ROP16 has multiple consequences, including downregulation of proinflammatory cytokine signaling and macrophage deviation to an alternatively activated phenotype.


mSphere ◽  
2019 ◽  
Vol 4 (3) ◽  
Author(s):  
Tadakimi Tomita ◽  
Hua Wang ◽  
Peng Wu ◽  
Louis M. Weiss

ABSTRACT Toxoplasma gondii is an obligate intracellular parasite that chronically infects up to a third of the human population. The parasites persist in the form of cysts in the central nervous system and serve as a reservoir for the reactivation of toxoplasmic encephalitis. The cyst wall is known to have abundant O-linked N-acetylgalactosamine glycans, but the existing metabolic labeling methods do not allow selective labeling of intracellular parasite glycoproteins without labeling of host glycans. In this study, we have integrated Cu(I)-catalyzed bioorthogonal click chemistry with a specific esterase-ester pair system in order to selectively deliver azidosugars to the intracellular parasites. We demonstrated that α-cyclopropyl modified GalNAz was cleaved by porcine liver esterase produced in the parasites but not in the host cells. Our proof-of-concept study demonstrates the feasibility and potential of this esterase-ester click chemistry approach for the selective delivery of small molecules in a stage-specific manner. IMPORTANCE Selective delivery of small molecules into intracellular parasites is particularly problematic due to the presence of multiple membranes and surrounding host cells. We have devised a method that can deliver caged molecules into an intracellular parasite, Toxoplasma gondii, that express an uncaging enzyme in a stage-specific manner without affecting host cell biology. This system provides a valuable tool for studying many intracellular parasites.


mBio ◽  
2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Magdalena Franco ◽  
Michael W. Panas ◽  
Nicole D. Marino ◽  
Mei-Chong Wendy Lee ◽  
Kerry R. Buchholz ◽  
...  

ABSTRACT The intracellular protozoan Toxoplasma gondii dramatically reprograms the transcriptome of host cells it infects, including substantially up-regulating the host oncogene c -myc . By applying a flow cytometry-based selection to infected mouse cells expressing green fluorescent protein fused to c-Myc (c-Myc–GFP), we isolated mutant tachyzoites defective in this host c-Myc up-regulation. Whole-genome sequencing of three such mutants led to the identification of MYR1 ( My c r egulation 1 ; TGGT1_254470 ) as essential for c-Myc induction. MYR1 is a secreted protein that requires TgASP5 to be cleaved into two stable portions, both of which are ultimately found within the parasitophorous vacuole and at the parasitophorous vacuole membrane. Deletion of MYR1 revealed that in addition to its requirement for c-Myc up-regulation, the MYR1 protein is needed for the ability of Toxoplasma tachyzoites to modulate several other important host pathways, including those mediated by the dense granule effectors GRA16 and GRA24. This result, combined with its location at the parasitophorous vacuole membrane, suggested that MYR1 might be a component of the machinery that translocates Toxoplasma effectors from the parasitophorous vacuole into the host cytosol. Support for this possibility was obtained by showing that transit of GRA24 to the host nucleus is indeed MYR1-dependent. As predicted by this pleiotropic phenotype, parasites deficient in MYR1 were found to be severely attenuated in a mouse model of infection. We conclude, therefore, that MYR1 is a novel protein that plays a critical role in how Toxoplasma delivers effector proteins to the infected host cell and that this is crucial to virulence. IMPORTANCE Toxoplasma gondii is an important human pathogen and a model for the study of intracellular parasitism. Infection of the host cell with Toxoplasma tachyzoites involves the introduction of protein effectors, including many that are initially secreted into the parasitophorous vacuole but must ultimately translocate to the host cell cytosol to function. The work reported here identified a novel protein that is required for this translocation. These results give new insight into a very unusual cell biology process as well as providing a potential handle on a pathway that is necessary for virulence and, therefore, a new potential target for chemotherapy.


mSphere ◽  
2017 ◽  
Vol 2 (3) ◽  
Author(s):  
Nathan M. Chasen ◽  
Beejan Asady ◽  
Leandro Lemgruber ◽  
Rossiane C. Vommaro ◽  
Jessica C. Kissinger ◽  
...  

ABSTRACT Toxoplasma gondii is an intracellular pathogen that infects humans and animals. The pathogenesis of T. gondii is linked to its lytic cycle, which starts when tachyzoites invade host cells and secrete proteins from specialized organelles. Once inside the host cell, the parasite creates a parasitophorous vacuole (PV) where it divides. Rhoptries are specialized secretory organelles that contain proteins, many of which are secreted during invasion. These proteins have important roles not only during the initial interaction between parasite and host but also in the formation of the PV and in the modification of the host cell. We report here the identification of a new T. gondii carbonic anhydrase-related protein (TgCA_RP), which localizes to rhoptries of mature tachyzoites. TgCA_RP is important for the morphology of rhoptries and for invasion and growth of parasites. TgCA_RP is also critical for parasite virulence. We propose that TgCA_RP plays a role in the biogenesis of rhoptries. Carbonic anhydrase-related proteins (CARPs) have previously been described as catalytically inactive proteins closely related to α-carbonic anhydrases (α-CAs). These CARPs are found in animals (both vertebrates and invertebrates) and viruses as either independent proteins or domains of other proteins. We report here the identification of a new CARP (TgCA_RP) in the unicellular organism Toxoplasma gondii that is related to the recently described η-class CA found in Plasmodium falciparum. TgCA_RP is posttranslationally modified at its C terminus with a glycosylphosphatidylinositol anchor that is important for its localization in intracellular tachyzoites. The protein localizes throughout the rhoptry bulbs of mature tachyzoites and to the outer membrane of nascent rhoptries in dividing tachyzoites, as demonstrated by immunofluorescence and immunoelectron microscopy using specific antibodies. T. gondii mutant tachyzoites lacking TgCA_RP display a growth and invasion phenotype in vitro and have atypical rhoptry morphology. The mutants also exhibit reduced virulence in a mouse model. Our results show that TgCA_RP plays an important role in the biogenesis of rhoptries. IMPORTANCE Toxoplasma gondii is an intracellular pathogen that infects humans and animals. The pathogenesis of T. gondii is linked to its lytic cycle, which starts when tachyzoites invade host cells and secrete proteins from specialized organelles. Once inside the host cell, the parasite creates a parasitophorous vacuole (PV) where it divides. Rhoptries are specialized secretory organelles that contain proteins, many of which are secreted during invasion. These proteins have important roles not only during the initial interaction between parasite and host but also in the formation of the PV and in the modification of the host cell. We report here the identification of a new T. gondii carbonic anhydrase-related protein (TgCA_RP), which localizes to rhoptries of mature tachyzoites. TgCA_RP is important for the morphology of rhoptries and for invasion and growth of parasites. TgCA_RP is also critical for parasite virulence. We propose that TgCA_RP plays a role in the biogenesis of rhoptries.


2002 ◽  
Vol 115 (15) ◽  
pp. 3049-3059 ◽  
Author(s):  
Audra J. Charron ◽  
L. David Sibley

Successful replication of the intracellular parasite Toxoplasma gondii within its parasitophorous vacuole necessitates a substantial increase in membrane mass. The possible diversion and metabolism of host cell lipids and lipid precursors by Toxoplasma was therefore investigated using radioisotopic and fluorophore-conjugated compounds. Confocal microscopic analyses demonstrated that Toxoplasma is selective with regards to both the acquisition and compartmentalization of host cell lipids. Lipids were compartmentalized into parasite endomembranes and, in some cases, were apparently integrated into the surrounding vacuolar membrane. Additionally,some labels became concentrated in discrete lipid bodies that were biochemically and morphologically distinct from the parasite apical secretory organelles. Thin layer chromatography established that parasites readily scavenged long-chain fatty acids as well as cholesterol, and in certain cases modified the host-derived lipids. When provided with radiolabeled phospholipid precursors, including polar head groups, phosphatidic acid and small fatty acids, intracellular parasites preferentially accrued phosphatidylcholine(PtdCho) over other phospholipids. Moreover, Toxoplasma was found to be competent to synthesize PtdCho from radiolabeled precursors obtained from its environment. Together, these studies underscore the ability of Toxoplasma gondii to divert and use lipid resources from its host, a process that may contribute to the biogenesis of parasite membranes.


2014 ◽  
Vol 13 (8) ◽  
pp. 965-976 ◽  
Author(s):  
Ira J. Blader ◽  
Anita A. Koshy

ABSTRACTIntracellular pathogens can replicate efficiently only after they manipulate and modify their host cells to create an environment conducive to replication. While diverse cellular pathways are targeted by different pathogens, metabolism, membrane and cytoskeletal architecture formation, and cell death are the three primary cellular processes that are modified by infections.Toxoplasma gondiiis an obligate intracellular protozoan that infects ∼30% of the world's population and causes severe and life-threatening disease in developing fetuses, in immune-comprised patients, and in certain otherwise healthy individuals who are primarily found in South America. The high prevalence ofToxoplasmain humans is in large part a result of its ability to modulate these three host cell processes. Here, we highlight recent work defining the mechanisms by whichToxoplasmainteracts with these processes. In addition, we hypothesize why some processes are modified not only in the infected host cell but also in neighboring uninfected cells.


1997 ◽  
Vol 110 (17) ◽  
pp. 2117-2128 ◽  
Author(s):  
A.P. Sinai ◽  
P. Webster ◽  
K.A. Joiner

The parasitophorous vacuole membrane (PVM) of the obligate intracellular protozoan parasite Toxoplasma gondii forms tight associations with host mitochondria and the endoplasmic reticulum (ER). We have used a combination of morphometric and biochemical approaches to characterize this unique phenomenon, which we term PVM-organelle association. The PVM is separated from associated mitochondria and ER by a mean distance of 12 and 18 nm, respectively. The establishment of PVM-organelle association is dependent on active parasite entry, but does not require parasite viability for its maintenance. Association is not a consequence of spatial constraints imposed on the growing vacuole. Morphometric analysis indicates that the extent of mitochondrial association with the PVM stays constant as the vacuole enlarges, whereas the extent of ER association decreases. Disruption of host cell microtubules partially blocks the establishment but not the maintenance of PVM-mitochondrial association, and has no significant effect on PVM-ER association. PVM-organelle association is maintained following disruption of infected host cells, as assessed by electron microscopy and by sub-cellular fractionation showing co-migration of fixed PVM and organelle markers. Taken together, the data suggest that a high affinity, potentially protein-protein interaction between parasite and organelle components is responsible for PVM-organelle association.


Sign in / Sign up

Export Citation Format

Share Document