scholarly journals Controlling for the effect of arterial-CO2 fluctuations in resting-state fMRI: Comparing end-tidal CO2 clamping and retroactive CO2 correction

2020 ◽  
Author(s):  
Ali M. Golestani ◽  
J. Jean Chen

AbstractThe BOLD signal, as the basis of functional MRI, arises from both neuronal and vascular factors, with their respective contributions to resting state-fMRI still unknown. Among the factors contributing to “physiological noise”, dynamic arterial CO2 fluctuations constitutes the strongest and the most widespread modulator of the grey-matter rs-fMRI signal. Some important questions are: (1) if we were able to clamp arterial CO2 such that fluctuations are removed, what would happen to rs-fMRI measures? (2) falling short of that, is it possible to retroactively correct for CO2 effects with equivalent outcome? In this study 13 healthy subjects underwent two rs-fMRI acquisition: During the “clamped” run, end-tidal CO2 (PETCO2) is clamped to the average PETCO2 level of each participant, while during the “free-breathing” run, the PETCO2 level is passively monitored but not controlled. PETCO2 correction was applied to the free-breathing data by convolving PETCO2 with its BOLD response function, and then regressing out the result. We computed the BOLD resting-state fluctuation amplitude (RSFA), as well as seed-independent mean functional connectivity (FC) as the weighted global brain connectivity (wGBC). Furthermore, connectivity between conditions were compared using coupled intrinsic-connectivity distribution (ICD) method. We ensured that PETCO2 clamping did not significantly alter heart-beat and respiratory variation. We found that neither PETCO2 clamping nor correction produced significant change in RSFA and wGBC. In terms of the ICD, PETCO2 clamping and correction both reduced FC strength in the majority of grey matter regions, although the effect of PETCO2 correction is considerably smaller than the effect of PETCO2 clamping. Furthermore, while PETCO2 clamping reduced inter-subject variability in FC, PETCO2 correction increased the variability. Overall PETCO2 correction is not the equivalent of PETCO2 clamping, although it shifts FC values towards the same direction as clamping does.

2017 ◽  
Author(s):  
Katrin H. Preller ◽  
Joshua B. Burt ◽  
Jie Lisa Ji ◽  
Charles Schleifer ◽  
Brendan Adkinson ◽  
...  

ABSTRACTLysergic acid diethylamide (LSD) is a psychedelic drug with predominantly agonist activity at various serotonin (5-HT) and dopamine receptors. Despite the therapeutic and scientific interest in LSD, the specific receptor contributions to its neurobiological effects remain largely unknown. To address this knowledge gap, we conducted a double-blind, randomized, counterbalanced, cross-over study during which 24 healthy participants received either i) placebo+placebo, ii) placebo+LSD (100 μg po), or iii) ketanserin – a selective 5-HT2A receptor antagonist. Here we focus on resting-state fMRI, a measure of spontaneous neural fluctuations that can map functional brain connectivity. We collected resting-state data 75 and 300 minutes after LSD/placebo administration. We quantified resting-state functional connectivity via a fully data-driven global brain connectivity (GBC) method to comprehensively map LSD neuropharmacological effects. LSD administration caused widespread GBC alterations that followed a specific topography: LSD reduced connectivity in associative areas, but concurrently increased connectivity across sensory and somatomotor areas. The 5-HT2A receptor antagonist, ketanserin, fully blocked the subjective and neural LSD effects. We show that whole-brain data-driven spatial patterns of LSD effects matched 5-HT2A receptor cortical gene expression in humans, which along with ketanserin effects, strongly implicates the 5-HT2A receptor in LSD’s neuropharmacology. Critically, the LSD-induced subjective effects were associated with somatomotor networks GBC changes. These data-driven neuropharmacological results pinpoint the critical role of 5-HT2A in LSD’s mechanism, which informs its neurobiology and guides rational development of psychedelic-based therapeutics


Author(s):  
Zhen-Zhen Ma ◽  
Jia-Jia Wu ◽  
Xu-Yun Hua ◽  
Mou-Xiong Zheng ◽  
Xiang-Xin Xing ◽  
...  

2019 ◽  
Author(s):  
Jianfeng Zhang ◽  
Zirui Huang ◽  
Shankar Tumati ◽  
Georg Northoff

AbstractRecent resting-state fMRI studies have revealed that the global signal (GS) exhibits a non-uniform spatial distribution across the gray matter. Whether this topography is informative remains largely unknown. We therefore tested rest-task modulation of global signal topography by analyzing static global signal correlation and dynamic co-activation patterns in a large sample of fMRI dataset (n=837) from the Human Connectome Project. The GS topography in the resting-state and in seven different tasks was first measured by correlating the global signal with the local timeseries (GSCORR). In the resting state, high GSCORR was observed mainly in the primary sensory and motor regions, while low GSCORR was seen in the association brain areas. This pattern changed during the seven tasks, with mainly decreased GSCORR in sensorimotor cortex. Importantly, this rest-task modulation of GSCORR could be traced to transient co-activation patterns at the peak period of global signal (GS-peak). By comparing the topography of GSCORR and respiration effects, we observed that the topography of respiration mimicked the topography of global signal in the resting-state whereas both differed during the task states; due to such partial dissociation, we assume that GSCORR could not be equated with a respiration effect. Finally, rest-task modulation of GS topography could not be exclusively explained by other sources of physiological noise. Together, we here demonstrate the informative nature of global signal topography by showing its rest-task modulation, the underlying dynamic co-activation patterns, and its partial dissociation from respiration effects during task states.


2021 ◽  
Author(s):  
Takashi Nakano ◽  
Masahiro Takamura ◽  
Haruki Nishimura ◽  
Maro Machizawa ◽  
Naho Ichikawa ◽  
...  

AbstractNeurofeedback (NF) aptitude, which refers to an individual’s ability to change its brain activity through NF training, has been reported to vary significantly from person to person. The prediction of individual NF aptitudes is critical in clinical NF applications. In the present study, we extracted the resting-state functional brain connectivity (FC) markers of NF aptitude independent of NF-targeting brain regions. We combined the data in fMRI-NF studies targeting four different brain regions at two independent sites (obtained from 59 healthy adults and six patients with major depressive disorder) to collect the resting-state fMRI data associated with aptitude scores in subsequent fMRI-NF training. We then trained the regression models to predict the individual NF aptitude scores from the resting-state fMRI data using a discovery dataset from one site and identified six resting-state FCs that predicted NF aptitude. Next we validated the prediction model using independent test data from another site. The result showed that the posterior cingulate cortex was the functional hub among the brain regions and formed predictive resting-state FCs, suggesting NF aptitude may be involved in the attentional mode-orientation modulation system’s characteristics in task-free resting-state brain activity.


2016 ◽  
Vol 11 ◽  
pp. 302-315 ◽  
Author(s):  
Tingting Xu ◽  
Kathryn R. Cullen ◽  
Bryon Mueller ◽  
Mindy W. Schreiner ◽  
Kelvin O. Lim ◽  
...  

Author(s):  
Sandro Nunes ◽  
Marta Bianciardi ◽  
Afonso Dias ◽  
Luis M. Silveira ◽  
Lawrence L. Wald ◽  
...  

Neuroscience ◽  
2018 ◽  
Vol 382 ◽  
pp. 80-92 ◽  
Author(s):  
Arkan Al-Zubaidi ◽  
Marcus Heldmann ◽  
Alfred Mertins ◽  
Kamila Jauch-Chara ◽  
Thomas F. Münte

2020 ◽  
Vol 46 (Supplement_1) ◽  
pp. S114-S114
Author(s):  
Yulia Zaytseva ◽  
Eva Kozakova ◽  
Pavel Mohr ◽  
Filip Spaniel ◽  
Aaron Mishara

Abstract Background The self-disturbances (SDs) concept is considered to be part of the Schneider’s first rank symptoms, i.e., thought-withdrawal, thought-insertion, thought-broadcasting, somatic-passivity experiences, mental/motor automatisms, disrupted unitary self-experience (Mishara et al., 2014). SDs were originally described by W. Mayer-Gross (1920), who observed them in psychotic patients. Methods We classified Mayer-Gross’ findings on SDs into the following categories: experience is new/compelling (aberrant salience), reduced access/importance of autobiographical past, cognitions/emotions occur independently from self’s volition, foreign agents have power over self and developed an SDs scale based on these categories and cognitive domains (perception, motor, speech, thinking etc.). Scale is applied as a measure of the frequency of the experiences. In our current study on phenomenology and neurobiology of psychotic symptoms, we administered the scale to a study group of patients with schizophrenia (N=84) and healthy volunteers (N=170). Further, the resting state fMRI was performed and the group was divided into two subgroups with (N=13) and without self-disturbances (N=10) and in healthy individuals (N=39). Results We found substantial differences in the frequency of self-disturbances in patients with schizophrenia compared to healthy controls (total score differences, Z=-5.83, p< 0.001). On a neural level, patients with self-disturbances experienced a decreased functional brain connectivity of the default mode and salience networks as compared to the patients without self-disturbances and healthy controls. The differences were mainly explained by the factor ‘’foreign agents’’ and the novelty of the experience. Discussion The scale identifies self-disturbances in schizophrenia and confirms self-related processing in patients with schizophrenia to be associated with altered activation in the cortical midline structures. Supported by the grant projects MH CR AZV 17-32957A and MEYS NPU4NUDZ: LO1611.


2018 ◽  
Vol 293 ◽  
pp. 299-309 ◽  
Author(s):  
Zikuan Chen ◽  
Arvind Caprihan ◽  
Eswar Damaraju ◽  
Srinivas Rachakonda ◽  
Vince Calhoun

NeuroImage ◽  
2014 ◽  
Vol 102 ◽  
pp. 938-944 ◽  
Author(s):  
Haochang Shou ◽  
Ani Eloyan ◽  
Mary Beth Nebel ◽  
Amanda Mejia ◽  
James J. Pekar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document