scholarly journals Autophagic degradation of the Cucumber mosaic virus virulence factor 2b balances antiviral RNA silencing with proviral plant fitness and virus seed transmission

2020 ◽  
Author(s):  
Aayushi Shukla ◽  
Gesa Hoffmann ◽  
Silvia López-González ◽  
Daniel Hofius ◽  
Anders Hafrén

AbstractAutophagy is a conserved intracellular degradation pathway that has recently emerged as an integral part of plant responses to virus infection. The elucidated mechanisms of autophagy range from the selective degradation of viral components to a more general attenuation of disease symptoms. In addition, several viruses are able to manipulate the autophagy machinery and counteract autophagy-dependent resistance. Despite these findings, the complex interplay of autophagy activities, viral pathogenicity factors, and host defence pathways in disease development remains poorly understood. In the current study, we analysed the interaction between autophagy and Cucumber mosaic virus (CMV) in Arabidopsis thaliana. We show that autophagy is induced during CMV infection and promotes the turnover of the major CMV virulence protein and RNA silencing suppressor 2b. Intriguingly, 2b itself dampens plant autophagy. In accordance with 2b degradation, we found that autophagy provides resistance against CMV by reducing viral RNA accumulation in an RNA silencing-dependent manner. Moreover, autophagy and RNA silencing pathways contribute to plant longevity and fecundity of CMV infected plants in an additive manner, uncoupling it from resistance. In addition to reduced fecundity, autophagy-deficient plants also failed to support seed transmission of the virus. We propose that autophagy attenuates CMV virulence via 2b degradation and thereby increases both plant and virus fitness with a trade-off penalty arising from increased RNA silencing-mediated resistance.Author summaryThe capacity of plants to fight pathogenic viruses in order to survive and minimize damage relies on profound cellular reprogramming events. These include the synthesis of new as well as the degradation of pre-existing cellular components, together shifting cellular homeostasis towards a better tolerance of disease and fortification of antiviral defence mechanisms. Autophagy is a prominent and highly conserved cellular degradation pathway that supports plant stress resilience. Autophagy functions vary broadly and range from rather unspecific renewal of cytoplasm to highly selective degradation of a wide collection of specific substrates. Autophagy is well established to be involved during virus infections in animals, and its importance has also recently emerged in virus diseases of plants. However, we are still far from a comprehensive understanding of the complexity of autophagy activities in host-virus interactions and how autophagy pathway engineering could be applied against viruses. Here, we have analyzed one of the traditional model plant viruses, Cucumber mosaic virus (CMV), and its interactions with autophagy. Our study revealed that autophagy is tightly integrated into CMV disease, influencing processes from plant health to CMV epidemiology.

2017 ◽  
Vol 53 (No. 4) ◽  
pp. 201-207 ◽  
Author(s):  
Hong Jin-Sung ◽  
Jeong Mi-Ae ◽  
Jeong Rae-Dong

Gamma irradiation has been shown to be an effective method of controlling plant bacterial and fungal pathogens, but data on its effect against plant viruses is limited. A mechanism for the inactivation of plant viruses by gamma irradiation has not been proposed. Gamma irradiation was evaluated for the inactivation of Cucumber green mottle mosaic virus (CGMMV) in Nicotiana tabacum plants. CGMMV infectivity decreased gradually in a dose-dependent manner, and the virus was completely inactivated at over 40 kGy. Transmission electron microscopy revealed that gamma irradiation disrupts the virion structure and degrades viral protein and genomic RNA, suggesting that damage to viral constituents is the mechanism by which gamma irradiation inactivates the virus.


2004 ◽  
Vol 17 (1) ◽  
pp. 98-108 ◽  
Author(s):  
Fabrizio Cillo ◽  
Mariella M. Finetti-Sialer ◽  
Maria A. Papanice ◽  
Donato Gallitelli

Transgenic tomato (Lycopersicon esculentum Mill. cv. UC82) plants expressing a benign variant of Cucumber mosaic virus satellite RNA (CMV Tfn-satRNA) were generated. The transformed plants did not produce symptoms when challenged with a satRNA-free strain of CMV (CMV-FL). The same plant lines initially were susceptible to necrosis elicited by a CMV strain supporting a necrogenic variant of satRNA (CMV-77), but a phenotype of total recovery from the necrosis was observed in the newly developing leaves. The features of the observed resistance were analyzed and are consistent with two different mechanisms of resistance. In transgenic plants inoculated with CMV-FL strain, the symptomless phenotype was correlated to the down-regulation of CMV by Tfn-satRNA, amplified from the transgene transcripts, as the first resistance mechanism. On the other hand, the delayed resistance to CMV-77 in transgenic tomato lines was mediated by a degradation process that targets satRNAs in a sequence-specific manner. Evidence is provided for a correlation between a reduced accumulation level of transgenic messenger Tfn-satRNA, the accumulation of small (approximately 23 nucleotides) RNAs with sequence homology to satRNAs, the progressively reduced accumulation of 77-satRNA in infected tissues, and the transition in infected plants from diseased to healthy. Thus, events leading to the degradation of satRNA sequences indicate a role for RNA silencing as the second mechanism determining resistance of transgenic tomato lines.


1997 ◽  
Vol 87 (9) ◽  
pp. 924-931 ◽  
Author(s):  
Yanming Yang ◽  
Kyung Soo Kim ◽  
Edwin J. Anderson

Spinach (Spinacia oleracea) seed from a commercial breeding line suspected of harboring cucumber mosaic virus (CMV) was analyzed for seed transmission of the virus. Initial seed grow-out tests and enzymelinked immunosorbent assay studies indicated that CMV was present in this seed lot at a level of nearly 15%. To verify these results and gain insight into the mechanism of seed transmission, four combinations of crosses between healthy and/or infected parent plants were conducted. None of the spinach seedlings derived from crossing healthy male and healthy female plants contained CMV, whereas a portion of seedlings derived from all of the other three crosses, i.e., healthy male and infected female, infected male and healthy female, and infected male and infected female plants, were infected with CMV. The results demonstrate that CMV is seed transmitted in spinach and indicate that both male and female parent plants can serve as infection sources. Ultrastructural studies, including immunogold labeling, revealed the presence of virus particles in the cytoplasm of ovary wall cells, ovule integuments and nucellus, anther, and seed-coat cells, as well as fine fibril-containing vesicles and electron-dense inclusions of amorphous aggregates in the central vacuoles of these cells. In addition, reverse transcription-polymerase chain reaction (RT-PCR) was used to amplify 860-bp cDNA fragments containing the CMV coat protein (CP) gene from the embryo, endosperm, and pollen tissues of CMV-infected plants. Taken together, these studies indicate that CMV occurs in virtually all spinach reproductive tissues. Analysis of several RT-PCR amplified and cloned CP genes and flanking sequences from parent and progeny plants revealed that the spinachinfecting CMV was a member of subgroup II. Furthermore, cDNA sequencing and restriction endonuclease mapping consistently revealed two sequence variants, designated SP103 and SP104, in most plants analyzed. These data suggest that there may have been mixed infections of two distinct, seed-transmitted CMV variants in spinach.


2012 ◽  
Vol 25 (10) ◽  
pp. 1275-1285 ◽  
Author(s):  
Ming-Bo Wang ◽  
Chikara Masuta ◽  
Neil A. Smith ◽  
Hanako Shimura

RNA silencing plays a critical role in plant resistance against viruses, with multiple silencing factors participating in antiviral defense. Both RNA and DNA viruses are targeted by the small RNA-directed RNA degradation pathway, with DNA viruses being also targeted by RNA-directed DNA methylation. To evade RNA silencing, plant viruses have evolved a variety of counter-defense mechanisms such as expressing RNA-silencing suppressors or adopting silencing-resistant RNA structures. This constant defense–counter defense arms race is likely to have played a major role in defining viral host specificity and in shaping viral and possibly host genomes. Recent studies have provided evidence that RNA silencing also plays a direct role in viral disease induction in plants, with viral RNA-silencing suppressors and viral siRNAs as potentially the dominant players in viral pathogenicity. However, questions remain as to whether RNA silencing is the principal mediator of viral pathogenicity or if other RNA-silencing-independent mechanisms also account for viral disease induction. RNA silencing has been exploited as a powerful tool for engineering virus resistance in plants as well as in animals. Further understanding of the role of RNA silencing in plant–virus interactions and viral symptom induction is likely to result in novel anti-viral strategies in both plants and animals.


2011 ◽  
Vol 1 (1) ◽  
Author(s):  
Heiko Ziebell ◽  
Alex M. Murphy ◽  
Simon C. Groen ◽  
Trisna Tungadi ◽  
Jack H. Westwood ◽  
...  

2001 ◽  
Vol 14 (6) ◽  
pp. 715-724 ◽  
Author(s):  
Liang-Hui Ji ◽  
Shou-Wei Ding

The Cucumber mosaic virus (CMV)-encoded 2b protein (Cmv2b) is a nuclear protein that suppresses transgene RNA silencing in Nicotiana benthamiana. Cmv2b is an important virulence determinant but nonessential for systemic spread in N. glutinosa, in contrast to its indispensable role for systemic infections in cucumber. Here, we report that Cmv2b became essential for systemic infections in older N. glutinosa plants or in young seedlings pre-treated with salicylic acid (SA). Expression of Cmv2b from the genome of either CMV or Tobacco mosaic virus significantly reduced the inhibitory effect of SA on virus accumulation in inoculated leaves and systemic leaves. A close correlation is demonstrated between Cmv2b expression and a reduced SA-dependent induction of the alternative oxidase gene, a component of the recently proposed SA-regulated antiviral defense. These results collectively reveal a novel activity of Cmv2b in the inhibition of SA-mediated virus resistance. We used a N. tabacum line expressing a bacterial nahG transgene that degrades SA to provide evidence for a Cmv2b-sensitive antiviral defense mechanism in tobacco in which SA acts as a positive modifier but not as an essential component. We propose that SA induces virus resistance by potentiating a RNA-silencing antiviral defense that is targeted by Cmv2b.


2010 ◽  
Vol 5 (6) ◽  
pp. 705-708 ◽  
Author(s):  
Mathew G. Lewsey ◽  
Inmaculada González ◽  
Natalia O. Kalinina ◽  
Peter Palukaitis ◽  
Tomas Canto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document