scholarly journals Live-cell single particle imaging reveals the role of RNA polymerase II in histone H2A.Z eviction

2020 ◽  
Author(s):  
Anand Ranjan ◽  
Vu Q. Nguyen ◽  
Sheng Liu ◽  
Jan Wisniewski ◽  
Jee Min Kim ◽  
...  

AbstractThe H2A.Z histone variant, a genome-wide hallmark of permissive chromatin, is enriched near transcription start sites in all eukaryotes. H2A.Z is deposited by the SWR1 chromatin remodeler and evicted by unclear mechanisms. We tracked H2A.Z in living yeast at single-molecule resolution, and found that H2A.Z eviction is dependent on RNA Polymerase II (Pol II) and the Kin28/Cdk7 kinase, which phosphorylates Serine 5 of heptapeptide repeats on the carboxy-terminal domain of the largest Pol II subunit Rpb1. These findings link H2A.Z eviction to transcription initiation, promoter escape and early elongation activities of Pol II. Because passage of Pol II through +1 nucleosomes genome-wide would obligate H2A.Z turnover, we propose that global transcription of noncoding RNAs prior to premature termination, in addition to transcription of mRNAs, are responsible for eviction of H2A.Z. Such usage of yeast Pol II suggests a general mechanism coupling eukaryotic transcription to erasure of the H2A.Z epigenetic signal.

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Anand Ranjan ◽  
Vu Q Nguyen ◽  
Sheng Liu ◽  
Jan Wisniewski ◽  
Jee Min Kim ◽  
...  

The H2A.Z histone variant, a genome-wide hallmark of permissive chromatin, is enriched near transcription start sites in all eukaryotes. H2A.Z is deposited by the SWR1 chromatin remodeler and evicted by unclear mechanisms. We tracked H2A.Z in living yeast at single-molecule resolution, and found that H2A.Z eviction is dependent on RNA Polymerase II (Pol II) and the Kin28/Cdk7 kinase, which phosphorylates Serine 5 of heptapeptide repeats on the carboxy-terminal domain of the largest Pol II subunit Rpb1. These findings link H2A.Z eviction to transcription initiation, promoter escape and early elongation activities of Pol II. Because passage of Pol II through +1 nucleosomes genome-wide would obligate H2A.Z turnover, we propose that global transcription at yeast promoters is responsible for eviction of H2A.Z. Such usage of yeast Pol II suggests a general mechanism coupling eukaryotic transcription to erasure of the H2A.Z epigenetic signal.


2020 ◽  
Vol 48 (14) ◽  
pp. 7712-7727
Author(s):  
Michael Tellier ◽  
Justyna Zaborowska ◽  
Livia Caizzi ◽  
Eusra Mohammad ◽  
Taras Velychko ◽  
...  

Abstract Cyclin-dependent kinase 12 (CDK12) phosphorylates the carboxyl-terminal domain (CTD) of RNA polymerase II (pol II) but its roles in transcription beyond the expression of DNA damage response genes remain unclear. Here, we have used TT-seq and mNET-seq to monitor the direct effects of rapid CDK12 inhibition on transcription activity and CTD phosphorylation in human cells. CDK12 inhibition causes a genome-wide defect in transcription elongation and a global reduction of CTD Ser2 and Ser5 phosphorylation. The elongation defect is explained by the loss of the elongation factors LEO1 and CDC73, part of PAF1 complex, and SPT6 from the newly-elongating pol II. Our results indicate that CDK12 is a general activator of pol II transcription elongation and indicate that it targets both Ser2 and Ser5 residues of the pol II CTD.


2021 ◽  
Author(s):  
Srinivasan Rengachari ◽  
Sandra Schilbach ◽  
Shintaro Aibara ◽  
Christian Dienemann ◽  
Patrick Cramer

Mediator is a conserved coactivator that enables regulated transcription initiation from eukaryotic protein-coding genes1-3. Mediator is recruited by transcriptional activators and binds the pre-initiation complex (PIC) to stimulate RNA polymerase II (Pol II) phosphorylation and promoter escape1-6. Here we prepare a 20-subunit recombinant human Mediator, reconstitute a 50-subunit Mediator-PIC complex, and resolve the complex structure by cryo-EM at an overall resolution of 4.5 Å. Mediator binds with its head module to the Pol II stalk and the general transcription factors TFIIB and TFIIE, resembling the Mediator-PIC interactions in the corresponding yeast complex7-9. One end of Mediator contains the metazoan-specific subunits MED27-MED30, which associate with exposed regions in MED14 and MED17 to form the proximal part of the tail module that binds activators. The opposite end of Mediator positions the flexibly linked CDK-activating kinase (CAK) of the general transcription factor TFIIH near the C-terminal repeat domain (CTD) of Pol II. The Mediator shoulder domain holds the CAK subunit CDK7, whereas the hook domain contacts a CDK7 element that flanks the kinase active site. The shoulder and hook reside in the Mediator head and middle modules, respectively, which can move relative to each other and may induce an active conformation of CDK7 to allosterically stimulate CTD phosphorylation and Pol II escape from the promoter.


Author(s):  
Priyanka Barman ◽  
Rwik Sen ◽  
Amala Kaja ◽  
Jannatul Ferdoush ◽  
Shalini Guha ◽  
...  

San1 ubiquitin ligase is involved in nuclear protein quality control via its interaction with intrinsically disordered proteins for ubiquitylation and proteasomal degradation. Since several transcription/chromatin regulatory factors contain intrinsically disordered domains and can be inhibitory to transcription when in excess, San1 might be involved in transcription regulation. To address this, we analyzed the role of San1 in genome-wide association of TBP [that nucleates pre-initiation complex (PIC) formation for transcription initiation] and RNA polymerase II (Pol II). Our results reveal the roles of San1 in regulating TBP recruitment to the promoters and Pol II association with the coding sequences, and hence PIC formation and coordination of elongating Pol II, respectively. Consistently, transcription is altered in the absence of San1. Such transcriptional alteration is associated with impaired ubiquitylation and proteasomal degradation of Spt16 and gene association of Paf1, but not the incorporation of centromeric histone, Cse4, into the active genes in Δsan1 . Collectively, our results demonstrate distinct functions of a nuclear protein quality control factor in regulating the genome-wide PIC formation and elongating Pol II (and hence transcription), thus unraveling new gene regulatory mechanisms.


2007 ◽  
Vol 27 (5) ◽  
pp. 1631-1648 ◽  
Author(s):  
Igor Chernukhin ◽  
Shaharum Shamsuddin ◽  
Sung Yun Kang ◽  
Rosita Bergström ◽  
Yoo-Wook Kwon ◽  
...  

ABSTRACT CTCF is a transcription factor with highly versatile functions ranging from gene activation and repression to the regulation of insulator function and imprinting. Although many of these functions rely on CTCF-DNA interactions, it is an emerging realization that CTCF-dependent molecular processes involve CTCF interactions with other proteins. In this study, we report the association of a subpopulation of CTCF with the RNA polymerase II (Pol II) protein complex. We identified the largest subunit of Pol II (LS Pol II) as a protein significantly colocalizing with CTCF in the nucleus and specifically interacting with CTCF in vivo and in vitro. The role of CTCF as a link between DNA and LS Pol II has been reinforced by the observation that the association of LS Pol II with CTCF target sites in vivo depends on intact CTCF binding sequences. “Serial” chromatin immunoprecipitation (ChIP) analysis revealed that both CTCF and LS Pol II were present at the β-globin insulator in proliferating HD3 cells but not in differentiated globin synthesizing HD3 cells. Further, a single wild-type CTCF target site (N-Myc-CTCF), but not the mutant site deficient for CTCF binding, was sufficient to activate the transcription from the promoterless reporter gene in stably transfected cells. Finally, a ChIP-on-ChIP hybridization assay using microarrays of a library of CTCF target sites revealed that many intergenic CTCF target sequences interacted with both CTCF and LS Pol II. We discuss the possible implications of our observations with respect to plausible mechanisms of transcriptional regulation via a CTCF-mediated direct link of LS Pol II to the DNA.


2020 ◽  
Vol 36 (1) ◽  
pp. 1-34 ◽  
Author(s):  
Sara Osman ◽  
Patrick Cramer

Gene transcription by RNA polymerase II (Pol II) is the first step in the expression of the eukaryotic genome and a focal point for cellular regulation during development, differentiation, and responses to the environment. Two decades after the determination of the structure of Pol II, the mechanisms of transcription have been elucidated with studies of Pol II complexes with nucleic acids and associated proteins. Here we provide an overview of the nearly 200 available Pol II complex structures and summarize how these structures have elucidated promoter-dependent transcription initiation, promoter-proximal pausing and release of Pol II into active elongation, and the mechanisms that Pol II uses to navigate obstacles such as nucleosomes and DNA lesions. We predict that future studies will focus on how Pol II transcription is interconnected with chromatin transitions, RNA processing, and DNA repair.


2008 ◽  
Vol 28 (12) ◽  
pp. 3979-3994 ◽  
Author(s):  
Lu Gao ◽  
David S. Gross

ABSTRACT It is well accepted that for transcriptional silencing in budding yeast, the evolutionarily conserved lysine deacetylase Sir2, in concert with its partner proteins Sir3 and Sir4, establishes a chromatin structure that prevents RNA polymerase II (Pol II) transcription. However, the mechanism of repression remains controversial. Here, we show that the recruitment of Pol II, as well as that of the general initiation factors TBP and TFIIH, occurs unimpeded to the silent HMR a 1 and HMLα1/HMLα2 mating promoters. This, together with the fact that Pol II is Ser5 phosphorylated, implies that SIR-mediated silencing is permissive to both preinitiation complex (PIC) assembly and transcription initiation. In contrast, the occupancy of factors critical to both mRNA capping and Pol II elongation, including Cet1, Abd1, Spt5, Paf1C, and TFIIS, is virtually abolished. In agreement with this, efficiency of silencing correlates not with a restriction in Pol II promoter occupancy but with a restriction in capping enzyme recruitment. These observations pinpoint the transition between polymerase initiation and elongation as the step targeted by Sir2 and indicate that transcriptional silencing is achieved through the differential accessibility of initiation and capping/elongation factors to chromatin. We compare Sir2-mediated transcriptional silencing to a second repression mechanism, mediated by Tup1. In contrast to Sir2, Tup1 prevents TBP, Pol II, and TFIIH recruitment to the HMLα1 promoter, thereby abrogating PIC formation.


2004 ◽  
Vol 24 (7) ◽  
pp. 2863-2874 ◽  
Author(s):  
Thomas C. Tubon ◽  
William P. Tansey ◽  
Winship Herr

ABSTRACT The general transcription factor TFIIB is a highly conserved and essential component of the eukaryotic RNA polymerase II (pol II) transcription initiation machinery. It consists of a single polypeptide with two conserved structural domains: an amino-terminal zinc ribbon structure (TFIIBZR) and a carboxy-terminal core (TFIIBCORE). We have analyzed the role of the amino-terminal region of human TFIIB in transcription in vivo and in vitro. We identified a small nonconserved surface of the TFIIBZR that is required for pol II transcription in vivo and for different types of basal pol II transcription in vitro. Consistent with a general role in transcription, this TFIIBZR surface is directly involved in the recruitment of pol II to a TATA box-containing promoter. Curiously, although the amino-terminal human TFIIBZR domain can recruit both human pol II and yeast (Saccharomyces cerevisiae) pol II, the yeast TFIIB amino-terminal region recruits yeast pol II but not human pol II. Thus, a critical process in transcription from many different promoters—pol II recruitment—has changed in sequence specificity during eukaryotic evolution.


2007 ◽  
Vol 27 (6) ◽  
pp. 2059-2073 ◽  
Author(s):  
Victoria H. Cowling ◽  
Michael D. Cole

ABSTRACT Myc is a transcription factor which is dependent on its DNA binding domain for transcriptional regulation of target genes. Here, we report the surprising finding that Myc mutants devoid of direct DNA binding activity and Myc target gene regulation can rescue a substantial fraction of the growth defect in myc −/− fibroblasts. Expression of the Myc transactivation domain alone induces a transcription-independent elevation of the RNA polymerase II (Pol II) C-terminal domain (CTD) kinases cyclin-dependent kinase 7 (CDK7) and CDK9 and a global increase in CTD phosphorylation. The Myc transactivation domain binds to the transcription initiation sites of these promoters and stimulates TFIIH binding in an MBII-dependent manner. Expression of the Myc transactivation domain increases CDK mRNA cap methylation, polysome loading, and the rate of translation. We find that some traditional Myc transcriptional target genes are also regulated by this Myc-driven translation mechanism. We propose that Myc transactivation domain-driven RNA Pol II CTD phosphorylation has broad effects on both transcription and mRNA metabolism.


2021 ◽  
Author(s):  
Uthra Gowthaman ◽  
Maxim Ivanov ◽  
Isabel Schwarz ◽  
Heta P. Patel ◽  
Niels A. Müller ◽  
...  

ABSTRACTNucleosome-depleted regions (NDRs) at gene promoters support initiation of RNA Polymerase II transcription. Interestingly, transcription often initiates in both directions, resulting in an mRNA, and a divergent non-coding (DNC) transcript with an unclear purpose. Here, we characterized the genetic architecture and molecular mechanism of DNC transcription in budding yeast. We identified the Hda1 histone deacetylase complex (Hda1C) as a repressor of DNC in high-throughput reverse genetic screens based on quantitative single-cell fluorescence measurements. Nascent transcription profiling showed a genome-wide role of Hda1C in DNC repression. Live-cell imaging of transcription revealed that Hda1C reduced the frequency of DNC transcription. Hda1C contributed to decreased acetylation of histone H3 in DNC regions, supporting DNC repression by histone deacetylation. Our data support the interpretation that DNC results as a consequence of the NDR-based architecture of eukaryotic promoters, but that it is governed by locus-specific repression to maintain genome fidelity.


Sign in / Sign up

Export Citation Format

Share Document