scholarly journals Gsx2 is involved in specification of neurons in the inferior olivary nuclei from Ptf1a-expressing neuronal progenitors in zebrafish

2020 ◽  
Author(s):  
Tsubasa Itoh ◽  
Miki Takeuchi ◽  
Marina Sakagami ◽  
Kazuhide Asakawa ◽  
Koichi Kawakami ◽  
...  

ABSTRACTNeurons in the inferior olivary nuclei (IO neurons) send climbing fibers to Purkinje cells to elicit functions of the cerebellum. IO neurons and Purkinje cells are derived from neural progenitors expressing the proneural gene ptf1a. In this study, we found that the homeobox gene gsx2 was co-expressed with ptf1a in IO progenitors in zebrafish. Both gsx2 and ptf1a zebrafish mutants showed a strong reduction or loss of IO neurons. The expression of ptf1a was not affected in gsx2 mutants and vice versa. In IO progenitors, the ptf1a mutation increased apoptosis whereas the gsx2 mutation did not, suggesting that ptf1a and gsx2 are independently regulated and have distinct roles. The fibroblast growth factors (Fgf) 3/8a and retinoic acid signals negatively and positively, respectively, regulated gsx2 expression and thereby the development of IO neurons. mafba and hox genes are at least partly involved in the Fgf- and retinoic acid-dependent regulation of IO neuronal development. Our results indicate that gsx2 mediates the rostro-caudal positional signals to specify the identity of IO neurons from ptf1a-expressing neural progenitors.SummaryThe homeobox gene gsx2 mediates rostro-caudal positional signaling to specify the identify of neurons in the inferior olivary nuclei from neural progenitors expressing the proneural gene ptf1a.

Development ◽  
2020 ◽  
Vol 147 (19) ◽  
pp. dev190603
Author(s):  
Tsubasa Itoh ◽  
Miki Takeuchi ◽  
Marina Sakagami ◽  
Kazuhide Asakawa ◽  
Kenta Sumiyama ◽  
...  

ABSTRACTNeurons in the inferior olivary nuclei (IO neurons) send climbing fibers to Purkinje cells to elicit functions of the cerebellum. IO neurons and Purkinje cells are derived from neural progenitors expressing the proneural gene ptf1a. In this study, we found that the homeobox gene gsx2 was co-expressed with ptf1a in IO progenitors in zebrafish. Both gsx2 and ptf1a zebrafish mutants showed a strong reduction or loss of IO neurons. The expression of ptf1a was not affected in gsx2 mutants, and vice versa. In IO progenitors, the ptf1a mutation increased apoptosis whereas the gsx2 mutation did not, suggesting that ptf1a and gsx2 are regulated independently of each other and have distinct roles. The fibroblast growth factors (Fgf) 3 and 8a, and retinoic acid signals negatively and positively, respectively, regulated gsx2 expression and thereby the development of IO neurons. mafba and Hox genes are at least partly involved in the Fgf- and retinoic acid-dependent regulation of IO neuronal development. Our results indicate that gsx2 mediates the rostro-caudal positional signals to specify the identity of IO neurons from ptf1a-expressing neural progenitors.


1992 ◽  
Vol 4 (2) ◽  
pp. 127-135 ◽  
Author(s):  
F. Frederic ◽  
F. Hainaut ◽  
M. Thomasset ◽  
J. L. Guenet ◽  
N. Delhaye-Bouchaud ◽  
...  

2020 ◽  
Vol 15 (3) ◽  
pp. 557-565
Author(s):  
Thomas J.R. Frith ◽  
Antigoni Gogolou ◽  
James O.S. Hackland ◽  
Zoe A. Hewitt ◽  
Harry D. Moore ◽  
...  

Development ◽  
1991 ◽  
Vol 113 (Supplement_1) ◽  
pp. 113-121 ◽  
Author(s):  
C. Tickle

The chick limb bud is a powerful experimental system in which to study pattern formation in vertebrate embryos. Exogenously applied retinoic acid, a vitamin A derivative, can bring about changes in pattern and, on several grounds, is a good candidate for an endogenous morphogen. As such, the local concentration of retinoic acid might provide cells with information about their position in relation to one axis of the limb. Alternatively, retinoic acid may be part of a more complex signalling system. Homeobox genes are possible target genes for regulation by retinoic acid in the limb. In particular, one homeobox gene, XlHbox 1 is expressed locally in the mesenchyme of vertebrate forelimbs and might code for an anterior position. When the pattern of the chick wing is changed by retinoic acid or by grafts of signalling tissue such that anterior cells now form posterior structures, the domain of XlHbox 1 expression expands rather than contracts. The expansion of XlHbox 1 expression correlates with shoulder girdle abnormalities. Retinoic acid application leads to visible changes in bud shape and this allows dissection of the way in which patterning is co-ordinated with morphogenesis. Results of recombination experiments and studies of changes in the apical ridge and proliferation in the mesenchyme suggest the following scheme: retinoic acid is involved in specification of position of mesenchyme cells; this specification determines their local interaction with the ridge that controls ridge morphology; the thickened apical ridge permits local proliferation in the underlying mesenchyme. The recent advances in molecular biology that permit analysis of the expression of various interesting genes in developing limbs hold out the promise that further investigation may soon allow a complete account of the patterning process in one part of the vertebrate embryo.


Development ◽  
1994 ◽  
Vol 120 (6) ◽  
pp. 1525-1536 ◽  
Author(s):  
M. Taira ◽  
H. Otani ◽  
M. Jamrich ◽  
I.B. Dawid

The LIM class homeobox gene Xlim-1 is expressed in Xenopus embryos in the lineages leading to (i) the notochord, (ii) the pronephros, and (iii) certain cells of the central nervous system (CNS). In its first expression phase, Xlim-1 mRNA arises in the Spemann organizer region, accumulates in prechordal mesoderm and notochord during gastrulation, and decays in these tissues during neurula stages except that it persists in the posterior tip of the notochord. In the second phase, expression in lateral mesoderm begins at late gastrula, and converges to the pronephros at tailbud stages. Expression in a central location of the neural plate also initiates at late gastrula, expands anteriorly and posteriorly, and becomes established in the lateral regions of the spinal cord and hindbrain at tailbud stages. Thus Xlim-1 expression precedes morphogenesis, suggesting that it may be involved in cell specification in these lineages. Enhancement of Xlim-1 expression by retinoic acid (RA) was first detectable in the dorsal mesoderm at initial gastrula. During gastrulation and early neurulation, RA strongly enhanced Xlim-1 expression in all three lineages and also expanded its expressing domains; this overexpression correlated well with RA phenotypes such as enlarged pronephros and hindbrain-like structure. Exogastrulation reduced Xlim-1 expression in the lateral mesoderm and ectoderm but not in the notochord, suggesting that the second phase of Xlim-1 expression requires mesoderm/ectoderm interactions. RA treatment of exogastrulae did not revert this reduction.


2020 ◽  
Vol 123 (6) ◽  
pp. 2449-2464
Author(s):  
Roman U. Goz ◽  
Gülcan Akgül ◽  
Joseph J. LoTurco

This study is the first to report the cell autonomous effects of BRAFV600E mutations on the intrinsic neuronal excitability. We show that BRAFV600E alters multiple electrophysiological parameters in neocortical neurons. Similar excitability changes did not occur in cells neighboring BRAFV600E-expressing neurons, after overexpression of wild-type BRAF transgenes, or after introduction of mutations affecting the mammalian target of rapamycin (mTOR) or the catalytic subunit of phosphoinositide 3-kinase (PIK3CA). We conclude that BRAFV600E causes a distinct, cell autonomous, highly excitable neuronal phenotype when introduced somatically into neocortical neuronal progenitors.


1998 ◽  
Vol 18 (1) ◽  
pp. 319-327 ◽  
Author(s):  
H. S. Zanjani ◽  
M. W. Vogel ◽  
J. C. Martinou ◽  
N. Delhaye-Bouchaud ◽  
J. Mariani

Endocrinology ◽  
2006 ◽  
Vol 147 (2) ◽  
pp. 647-658 ◽  
Author(s):  
Jun Udagawa ◽  
Ryuju Hashimoto ◽  
Hiroaki Suzuki ◽  
Toshihisa Hatta ◽  
Yusuke Sotomaru ◽  
...  

Leptin is detected in the sera, and leptin receptors are expressed in the cerebrum of mouse embryos, suggesting that leptin plays a role in cerebral development. Compared with the wild type, leptin-deficient (ob/ob) mice had fewer cells at embryonic day (E) 16 and E18 and had fewer 5-bromo-2′-deoxyuridine+ cells at E14 and E16 in the neuroepithelium. Intracerebroventricular leptin injection in E14 ob/ob embryos increased the number of neuroepithelium cells at E16. In cultured neurosphere cells, leptin treatment increased Hes1 mRNA expression and maintained neural progenitors. Astrocyte differentiation was induced by low-dose (0.1 μg/ml) but not high-dose (1 μg/ml) leptin. High-dose leptin decreased Id mRNA and increased Ngn1 mRNA in neurosphere cells. The neuropeptide Y mRNA level in the cortical plate was lower in ob/ob than the wild type at E16 and E18. These results suggest that leptin maintains neural progenitors and is related to glial and neuronal development in embryos.


Sign in / Sign up

Export Citation Format

Share Document