scholarly journals Gsx2 is required for specification of neurons in the inferior olivary nuclei from Ptf1a-expressing neural progenitors in zebrafish

Development ◽  
2020 ◽  
Vol 147 (19) ◽  
pp. dev190603
Author(s):  
Tsubasa Itoh ◽  
Miki Takeuchi ◽  
Marina Sakagami ◽  
Kazuhide Asakawa ◽  
Kenta Sumiyama ◽  
...  

ABSTRACTNeurons in the inferior olivary nuclei (IO neurons) send climbing fibers to Purkinje cells to elicit functions of the cerebellum. IO neurons and Purkinje cells are derived from neural progenitors expressing the proneural gene ptf1a. In this study, we found that the homeobox gene gsx2 was co-expressed with ptf1a in IO progenitors in zebrafish. Both gsx2 and ptf1a zebrafish mutants showed a strong reduction or loss of IO neurons. The expression of ptf1a was not affected in gsx2 mutants, and vice versa. In IO progenitors, the ptf1a mutation increased apoptosis whereas the gsx2 mutation did not, suggesting that ptf1a and gsx2 are regulated independently of each other and have distinct roles. The fibroblast growth factors (Fgf) 3 and 8a, and retinoic acid signals negatively and positively, respectively, regulated gsx2 expression and thereby the development of IO neurons. mafba and Hox genes are at least partly involved in the Fgf- and retinoic acid-dependent regulation of IO neuronal development. Our results indicate that gsx2 mediates the rostro-caudal positional signals to specify the identity of IO neurons from ptf1a-expressing neural progenitors.

2020 ◽  
Author(s):  
Tsubasa Itoh ◽  
Miki Takeuchi ◽  
Marina Sakagami ◽  
Kazuhide Asakawa ◽  
Koichi Kawakami ◽  
...  

ABSTRACTNeurons in the inferior olivary nuclei (IO neurons) send climbing fibers to Purkinje cells to elicit functions of the cerebellum. IO neurons and Purkinje cells are derived from neural progenitors expressing the proneural gene ptf1a. In this study, we found that the homeobox gene gsx2 was co-expressed with ptf1a in IO progenitors in zebrafish. Both gsx2 and ptf1a zebrafish mutants showed a strong reduction or loss of IO neurons. The expression of ptf1a was not affected in gsx2 mutants and vice versa. In IO progenitors, the ptf1a mutation increased apoptosis whereas the gsx2 mutation did not, suggesting that ptf1a and gsx2 are independently regulated and have distinct roles. The fibroblast growth factors (Fgf) 3/8a and retinoic acid signals negatively and positively, respectively, regulated gsx2 expression and thereby the development of IO neurons. mafba and hox genes are at least partly involved in the Fgf- and retinoic acid-dependent regulation of IO neuronal development. Our results indicate that gsx2 mediates the rostro-caudal positional signals to specify the identity of IO neurons from ptf1a-expressing neural progenitors.SummaryThe homeobox gene gsx2 mediates rostro-caudal positional signaling to specify the identify of neurons in the inferior olivary nuclei from neural progenitors expressing the proneural gene ptf1a.


1992 ◽  
Vol 4 (2) ◽  
pp. 127-135 ◽  
Author(s):  
F. Frederic ◽  
F. Hainaut ◽  
M. Thomasset ◽  
J. L. Guenet ◽  
N. Delhaye-Bouchaud ◽  
...  

2020 ◽  
Vol 15 (3) ◽  
pp. 557-565
Author(s):  
Thomas J.R. Frith ◽  
Antigoni Gogolou ◽  
James O.S. Hackland ◽  
Zoe A. Hewitt ◽  
Harry D. Moore ◽  
...  

Development ◽  
1991 ◽  
Vol 113 (Supplement_1) ◽  
pp. 113-121 ◽  
Author(s):  
C. Tickle

The chick limb bud is a powerful experimental system in which to study pattern formation in vertebrate embryos. Exogenously applied retinoic acid, a vitamin A derivative, can bring about changes in pattern and, on several grounds, is a good candidate for an endogenous morphogen. As such, the local concentration of retinoic acid might provide cells with information about their position in relation to one axis of the limb. Alternatively, retinoic acid may be part of a more complex signalling system. Homeobox genes are possible target genes for regulation by retinoic acid in the limb. In particular, one homeobox gene, XlHbox 1 is expressed locally in the mesenchyme of vertebrate forelimbs and might code for an anterior position. When the pattern of the chick wing is changed by retinoic acid or by grafts of signalling tissue such that anterior cells now form posterior structures, the domain of XlHbox 1 expression expands rather than contracts. The expansion of XlHbox 1 expression correlates with shoulder girdle abnormalities. Retinoic acid application leads to visible changes in bud shape and this allows dissection of the way in which patterning is co-ordinated with morphogenesis. Results of recombination experiments and studies of changes in the apical ridge and proliferation in the mesenchyme suggest the following scheme: retinoic acid is involved in specification of position of mesenchyme cells; this specification determines their local interaction with the ridge that controls ridge morphology; the thickened apical ridge permits local proliferation in the underlying mesenchyme. The recent advances in molecular biology that permit analysis of the expression of various interesting genes in developing limbs hold out the promise that further investigation may soon allow a complete account of the patterning process in one part of the vertebrate embryo.


Development ◽  
1995 ◽  
Vol 121 (2) ◽  
pp. 333-346 ◽  
Author(s):  
A.C. Burke ◽  
C.E. Nelson ◽  
B.A. Morgan ◽  
C. Tabin

A common form of evolutionary variation between vertebrate taxa is the different numbers of segments that contribute to various regions of the anterior-posterior axis; cervical vertebrae, thoracic vertebrae, etc. The term ‘transposition’ is used to describe this phenomenon. Genetic experiments with homeotic genes in mice have demonstrated that Hox genes are in part responsible for the specification of segmental identity along the anterior-posterior axis, and it has been proposed that an axial Hox code determines the morphology of individual vertebrae (Kessel, M. and Gruss, P. (1990) Science 249, 347–379). This paper presents a comparative study of the developmental patterns of homeobox gene expression and developmental morphology between animals that have homologous regulatory genes but different morphologies. The axial expression boundaries of 23 Hox genes were examined in the paraxial mesoderm of chick, and 16 in mouse embryos by in situ hybridization and immunolocalization techniques. Hox gene anterior expression boundaries were found to be transposed in concert with morphological boundaries. This data contributes a mechanistic level to the assumed homology of these regions in vertebrates. The recognition of mechanistic homology supports the historical homology of basic patterning mechanisms between all organisms that share these genes.


2005 ◽  
Vol 280 (16) ◽  
pp. 16484-16498 ◽  
Author(s):  
Eduardo Martinez-Ceballos ◽  
Pierre Chambon ◽  
Lorraine J. Gudas

Homeobox (Hox) genes encode a family of transcription factors that regulate embryonic patterning and organogenesis. In embryos, alterations of the normal pattern of Hox gene expression result in homeotic transformations and malformations. Disruption of theHoxa1gene, the most 3′ member of the Hoxa cluster and a retinoic acid (RA) direct target gene, results in abnormal ossification of the skull, hindbrain, and inner ear deficiencies, and neonatal death. We have generated Hoxa1-/-embryonic stem (ES) cells (named Hoxa1-15) from Hoxa1-/-mutant blastocysts to study the Hoxa1 signaling pathway. We have characterized in detail these Hoxa1-/-ES cells by performing microarray analyses, and by this technique we have identified a number of putative Hoxa-1 target genes, including genes involved in bone development (e.g. Col1a1,Postn/Osf2, and the bone sialoprotein gene orBSP), genes that are expressed in the developing brain (e.g. Nnat,Wnt3a,BDNF,RhoB, andGbx2), and genes involved in various cellular processes (e.g. M-RAS,Sox17,Cdkn2b,LamA1,Col4a1,Foxa2,Foxq1,Klf5, andIgf2). Cell proliferation assays and Northern blot analyses of a number of ES cell markers (e.g. Rex1,Oct3/4,Fgf4, andBmp4) suggest that the Hoxa1 protein plays a role in the inhibition of cell proliferation by RA in ES cells. Additionally, Hoxa1-/-ES cells express high levels of various endodermal markers, includingGata4andDab2, and express much lessFgf5after leukemia inhibitory factor (LIF) withdrawal. Finally, we propose a model in which the Hoxa1 protein mediates repression of endodermal differentiation while promoting expression of ectodermal and mesodermal characteristics.


Development ◽  
1994 ◽  
Vol 1994 (Supplement) ◽  
pp. 61-77 ◽  
Author(s):  
J. Robert Manak ◽  
Matthew P. Scott

Dramatic successes in identifying vertebrate homeobox genes closely related to their insect relatives have led to the recognition of classes within the homeodomain superfamily. To what extent are the homeodomain protein classes dedicated to specific functions during development? Although information on vertebrate gene functions is limited, existing evidence from mice and nematodes clearly supports conservation of function for the Hox genes. Less compelling, but still remarkable, is the conservation of other homeobox gene classes and of regulators of homeotic gene expression and function. It is too soon to say whether the cases of conservation are unique and exceptional, or the beginning of a profoundly unified view of gene regulation in animal development. In any case, new questions are raised by the data: how can the differences between mammals and insects be compatible with conservation of homeobox gene function? Did the evolution of animal form involve a proliferation of new homeodomain proteins, new modes of regulation of existing gene types, or new relationships with target genes, or is evolutionary change largely the province of other classes of genes? In this review, we summarize what is known about conservation of homeobox gene function.


Development ◽  
2000 ◽  
Vol 127 (1) ◽  
pp. 75-85 ◽  
Author(s):  
K. Niederreither ◽  
J. Vermot ◽  
B. Schuhbaur ◽  
P. Chambon ◽  
P. Dolle

Targeted disruption of the murine retinaldehyde dehydrogenase 2 (Raldh2) gene precludes embryonic retinoic acid (RA) synthesis, leading to midgestational lethality (Niederreither, K., Subbarayan, V., Dolle, P. and Chambon, P. (1999). Nature Genet. 21, 444–448). We describe here the effects of this RA deficiency on the development of the hindbrain and associated neural crest. Morphological segmentation is impaired throughout the hindbrain of Raldh2−/− embryos, but its caudal portion becomes preferentially reduced in size during development. Specification of the midbrain region and of the rostralmost rhombomeres is apparently normal in the absence of RA synthesis. In contrast, marked alterations are seen throughout the caudal hindbrain of mutant embryos. Instead of being expressed in two alternate rhombomeres (r3 and r5), Krox20 is expressed in a single broad domain, correlating with an abnormal expansion of the r2-r3 marker Meis2. Instead of forming a defined r4, Hoxb1- and Wnt8A-expressing cells are scattered throughout the caudal hindbrain, whereas r5/r8 markers such as kreisler or group 3/4 Hox genes are undetectable or markedly downregulated. Lack of alternate Eph receptor gene expression could explain the failure to establish rhombomere boundaries. Increased apoptosis and altered migratory pathways of the posterior rhombencephalic neural crest cells are associated with impaired branchial arch morphogenesis in mutant embryos. We conclude that RA produced by the embryo is required to generate posterior cell fates in the developing mouse hindbrain, its absence leading to an abnormal r3 (and, to a lesser extent, r4) identity of the caudal hindbrain cells.


Sign in / Sign up

Export Citation Format

Share Document