scholarly journals Ciliation of muscle stem cells is critical to maintain regenerative capacity and is lost during aging

2020 ◽  
Author(s):  
A.R. Palla ◽  
K.I. Hilgendorf ◽  
A.V. Yang ◽  
J.P. Kerr ◽  
A.C. Hinken ◽  
...  

AbstractDuring aging, the regenerative capacity of muscle stem cells (MuSCs) decreases, diminishing the ability of muscle to repair following injury. We performed a small molecule library screen and discovered that the proliferation and expansion of aged MuSCs is regulated by signal transduction pathways organized by the primary cilium, a cellular protrusion that serves as a sensitive sensory organelle. Abolishing MuSC cilia in vivo severely impaired injury-induced muscle regeneration. In aged muscle, a cell intrinsic defect in MuSC ciliation leading to impaired Hedgehog signaling was associated with the decrease in regenerative capacity. This deficit could be overcome by exogenous activation of Hedgehog signaling which promoted MuSC expansion, both in vitro and in vivo. Delivery of the small molecule Smoothened agonist (SAG) to muscles of aged mice restored regenerative capacity leading to increased strength post-injury. These findings provide fresh insights into the signaling dysfunction in aging and identify the ciliary Hedgehog signaling pathway as a potential therapeutic target to counter the loss of muscle regenerative capacity which accompanies aging.

Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Andrew J Smith ◽  
Iolanda Aquila ◽  
Beverley J Henning ◽  
Mariangela Scalise ◽  
Bernardo Nadal-Ginard ◽  
...  

The identification of resident, endogenous cardiac stem cells (eCSCs) has re-shaped our understanding of cardiac cellular physiology, while offering a significant potential therapeutic avenue. The biology of these cells must be better understood to harness their potential benefits. We used an acute dose (s.c.; 5mgkg-1) of isoproterenol (ISO) to induce diffuse cardiac injury, with associated eCSC activation, in rats. As peak eCSC activation was at 24 hours post ISO-injury, c-kitpos eCSCs were isolated, characterised and their potential for growth and regenerative potential was assessed in vitro and in vivo, respectively. Activated eCSCs showed increased cell cycling activity (51+1% in S- or G2/M phases vs. 9+2% of quiescent), Ki67 expression (56+7% vs. 10+1%) and TERT expression (14-fold increase vs. quiescent). When directly harvested in culture, activated eCSCs showed augmented proliferation, clonogenicity and cardiosphere formation compared to quiescent eCSCs. Activated eCSCs showed increases in expression of numerous growth factors, particularly HGF, IGF-1, TGF-β, periostin, PDGF-AA and VEGF-A. Furthermore, significant alterations were found in the miRnome, notably increased miR-146b and -221, and decreased miR-192 and -351. ISO+5FU was administrated to mice to induce a model of chronic dilated cardiomyopathy, which is characterized by the ablation of eCSCs and the absence of cardiomyocyte replenishment. In these mice with chronic heart failure, freshly isolated quiescent eCSCs or activated eCSCs (2d post-ISO) were injected through the tail vein. 28 days after injection, activated but not quiescent eCSCs re-populated the resident CSC pool, promoted robust new cardiomyocyte formation and improved cardiac function when compared to saline-treated mice. Dual-labelling with BrdU and EdU at selected stages after ISO injury determined that activated eCSCs returned to a quiescent level by 10 weeks post-injury. In conclusion, CSCs rapidly switch from a quiescent to an activated state to match the myocardial needs for myocyte replacement after injury and then spontaneously go back to quiescence. Harnessing the molecules regulating this process may open up future novel approaches for effective myocardial regeneration.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 858-858 ◽  
Author(s):  
Pamela s. Becker ◽  
Frederick R. Appelbaum ◽  
Sylvia Chien ◽  
Xin Zhao ◽  
Halvard Bonig ◽  
...  

Abstract Adhesion within the bone marrow (BM) microenvironment confers protection from chemotherapy induced apoptosis for a number of hematological malignancies, including AML. The majority of human AML blasts express VLA-4, the α4β1 integrin through which hematopoietic cells bind to VCAM-1 and/or fibronectin within the BM. Our laboratory and others have previously conducted in vitro studies demonstrating that antibody to VLA-4 enhanced chemotherapy induced cytotoxicity and apoptosis for AML cell lines and primary human AML blasts. One humanized anti-VLA-4 antibody (ab), natalizumab, is currently approved, with clinical applications in relapsing multiple sclerosis and Crohn’s disease, while a number of small molecule inhibitors of VLA-4 are under development with oral bioavailability for conditions such as asthma and inflammatory disorders. These oral agents would have the advantage of a shorter half-life than the humanized antibody, be available for just the period of chemotherapy treatment, and perhaps reduce the incidence of long-term toxicity. We herein present data that demonstrate the ability of an oral small molecule inhibitor of VLA-4, D11-5908 (Daiichi Sankyo Co., Ltd.) to potentiate chemotherapy toxicity in AML blasts in vitro, comparable to anti-VLA-4 ab in this first direct comparison study, its ability to mobilize normal murine stem cells or engrafted AML cells in xenograft mice, and no impairment of blood cell recovery in vivo in normal mice receiving a combination of D11-5908 and ara-C compared to ara-C alone. In independent experiments, the viability of AML blasts isolated from 8 patients pre-incubated with D11-5908, then treated with AraC (4 μM) or a combination of AraC (4 μM) and daunorubicin (5 μM), decreased by 27.8% ± 7.5% for cells on recombinant human fibronectin peptide CH-206, Retronectin™ (Rn), compared to a decrease of 10.4% ± 6.5% after pre-incubation with isotype control ab (p=0.0046 by two tailed paired t-test). This effect with D11-5908 was similar to the reduction in cell survival with the anti-VLA-4 ab, which decreased viability after chemotherapy by 20.2% ± 7.8% (p=0.014 compared to isotype control, and p=0.27 compared to D11-5908). Antibody to VLA-4 has been demonstrated to mobilize normal hematopoietic stem cells in vivo, in mice, non-human primates, and humans, a function that would be considered fundamental to an active VLA- 4 inhibitor. To test the ability of D11-5908 to mobilize both normal and AML cells in vivo from the marrow into the blood, we assayed for mobilization in both normal mice and in a xenograft model of human AML engrafted in NOD-scid β2microglobulin−/− mice. D11- 5908 mobilized both human AML cells, as well as normal murine progenitor cells in the NOD-scid mouse model. Mobilizing the human AML cells may render them susceptible to chemotherapy outside the protected BM microenvironment. Two of 4 NODscid mice previously engrafted with human AML cells mobilized human CD117 positive AML cells up to 50–60% of the peripheral blood mononuclear cells after treatment with D11- 5908, compared to negligible circulating AML prior to D11-5908 treatment. In addition, 2 untreated NODscid β2microglobulin−/− mice increased circulating murine colony forming cells (CFCs) from 253 ± 31/ml to 542 ± 106/ml of peripheral blood after three doses of oral gavage with D11-5908 (p=0.059). Four normal BALB/c mice, increased CFCs from 233/ml ± 14 to 471/ml ± 273 at 1 hour post 3rd dose of twice daily oral gavage with D11-5908. Lastly, D11-5908 did not impair normal blood cell recovery after AraC for BALB/c mice treated simultaneously with D11-5908 (100 mg/kg twice daily X 3 days) and AraC (20 mg/mouse IP), as compared to AraC alone in 5 independent experiments. The values for neutrophil count (ANC), nadir d.5-0.63 vs. 0.88 (p=0.30), recovery d.7-1.9 vs. 2.4 (p=0.13), and for a second experiment, nadir d. 3 -0.89 vs. 1.37 (p=0.095), recovery d. 5-1.23 vs.1.00 (p=0.38) did not differ significantly. The p values greater than 0.05 indicate that the blood cell recovery from nadir was equivalent for ara-C with or without D11-5908, as it was for white blood cells and hemoglobin; platelet counts were unaffected by these doses. These preclinical in vitro and in vivo data support the development of a promising therapeutic approach consisting of the combination of a novel oral adhesion inhibitor with chemotherapy for the treatment of AML.


Blood ◽  
2002 ◽  
Vol 100 (2) ◽  
pp. 721-723 ◽  
Author(s):  
Hartmut Geiger ◽  
Jarrod M. True ◽  
Barry Grimes ◽  
Elizabeth J. Carroll ◽  
Roger A. Fleischman ◽  
...  

Abstract Cells in murine muscle have been reported to differentiate into hematopoietic stem and progenitor cells and thus repopulate the hematopoietic system of an irradiated animal. This activity was attributed to muscle stem cells. We used an in vitro and in vivo approach to identify the hematopoietic repopulating activity found in muscle tissue of mice by antibody staining and cell sorting. We confirmed existence of a hematopoietic repopulating cell in muscle tissue, but the data strongly suggest that repopulation is due not to muscle stem cells but to hematopoietic cells present in muscle tissue. Unexpectedly, the blood-forming cells were enriched in muscle relative to their frequency in peripheral blood.


2020 ◽  
Vol 52 (4) ◽  
pp. 672-681 ◽  
Author(s):  
Jiyun Lee ◽  
Chang Youn Lee ◽  
Jun-Hee Park ◽  
Hyang-Hee Seo ◽  
Sunhye Shin ◽  
...  

Abstract Osteoarthritis (OA) is a common joint disease that results from the disintegration of joint cartilage and the underlying bone. Because cartilage and chondrocytes lack the ability to self-regenerate, efforts have been made to utilize stem cells to treat OA. Although various methods have been used to differentiate stem cells into functional chondrocytes, the currently available methods cannot induce stem cells to undergo differentiation into chondrocyte-like cells without inducing characteristics of hypertrophic chondrocytes, which finally lead to cartilage disintegration and calcification. Therefore, an optimized method to differentiate stem cells into chondrocytes that do not display undesired phenotypes is needed. This study focused on differentiating adipose-derived stem cells (ASCs) into functional chondrocytes using a small molecule that regulated the expression of Sox9 as a key factor in cartilage development and then explored its ability to treat OA. We selected ellipticine (ELPC), which induces chondrocyte differentiation of ASCs, using a GFP-Sox9 promoter vector screening system. An in vivo study was performed to confirm the recovery rate of cartilage regeneration with ASC differentiation into chondrocytes by ELPC in a collagenase-induced animal model of OA. Taken together, these data indicate that ellipticine induces ASCs to differentiate into mature chondrocytes without hypertrophic chondrocytes in vitro and in vivo, thus overcoming a problem encountered in previous studies. These results indicate that ELPC is a novel chondrocyte differentiation-inducing drug that shows potential as a cell therapy for OA.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sean M. Buchanan ◽  
Feodor D. Price ◽  
Alessandra Castiglioni ◽  
Amanda Wagner Gee ◽  
Joel Schneider ◽  
...  

Abstract Satellite cells are the canonical muscle stem cells that regenerate damaged skeletal muscle. Loss of function of these cells has been linked to reduced muscle repair capacity and compromised muscle health in acute muscle injury and congenital neuromuscular diseases. To identify new pathways that can prevent loss of skeletal muscle function or enhance regenerative potential, we established an imaging-based screen capable of identifying small molecules that promote the expansion of freshly isolated satellite cells. We found several classes of receptor tyrosine kinase (RTK) inhibitors that increased freshly isolated satellite cell numbers in vitro. Further exploration of one of these compounds, the RTK inhibitor CEP-701 (also known as lestaurtinib), revealed potent activity on mouse satellite cells both in vitro and in vivo. This expansion potential was not seen upon exposure of proliferating committed myoblasts or non-myogenic fibroblasts to CEP-701. When delivered subcutaneously to acutely injured animals, CEP-701 increased both the total number of satellite cells and the rate of muscle repair, as revealed by an increased cross-sectional area of regenerating fibers. Moreover, freshly isolated satellite cells expanded ex vivo in the presence of CEP-701 displayed enhanced muscle engraftment potential upon in vivo transplantation. We provide compelling evidence that certain RTKs, and in particular RET, regulate satellite cell expansion during muscle regeneration. This study demonstrates the power of small molecule screens of even rare adult stem cell populations for identifying stem cell-targeting compounds with therapeutic potential.


2019 ◽  
Vol 163 ◽  
pp. 481-492 ◽  
Author(s):  
Harshini Neelakantan ◽  
Camille R. Brightwell ◽  
Ted G. Graber ◽  
Rosario Maroto ◽  
Hua-Yu Leo Wang ◽  
...  

2016 ◽  
Vol 2 (8) ◽  
pp. e1600691 ◽  
Author(s):  
Heemin Kang ◽  
Yu-Ru V. Shih ◽  
Manando Nakasaki ◽  
Harsha Kabra ◽  
Shyni Varghese

The abilities of human pluripotent stem cells (hPSCs) to proliferate without phenotypic alteration and to differentiate into tissue-specific progeny make them a promising cell source for regenerative medicine and development of physiologically relevant in vitro platforms. Despite this potential, efficient conversion of hPSCs into tissue-specific cells still remains a challenge. Herein, we report direct conversion of hPSCs into functional osteoblasts through the use of adenosine, a naturally occurring nucleoside in the human body. The hPSCs treated with adenosine not only expressed the molecular signatures of osteoblasts but also produced calcified bone matrix. Our findings show that the adenosine-mediated osteogenesis of hPSCs involved the adenosine A2bR. When implanted in vivo, using macroporous synthetic matrices, the human induced pluripotent stem cell (hiPSC)–derived donor cells participated in the repair of critical-sized bone defects through the formation of neobone tissue without teratoma formation. The newly formed bone tissues exhibited various attributes of the native tissue, including vascularization and bone resorption. To our knowledge, this is the first demonstration of adenosine-induced differentiation of hPSCs into functional osteoblasts and their subsequent use to regenerate bone tissues in vivo. This approach that uses a physiologically relevant single small molecule to generate hPSC-derived progenitor cells is highly appealing because of its simplicity, cost-effectiveness, scalability, and impact in cell manufacturing, all of which are decisive factors for successful translational applications of hPSCs.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Baicheng Yi ◽  
Tian Ding ◽  
Shan Jiang ◽  
Ting Gong ◽  
Hitesh Chopra ◽  
...  

Abstract Objectives Recently, a new strategy has been developed to directly reprogram one cell type towards another targeted cell type using small molecule compounds. Human fibroblasts have been chemically reprogrammed into neuronal cells, Schwann cells and cardiomyocyte-like cells by different small molecule combinations. This study aimed to explore whether stem cells from apical papilla (SCAP) could be reprogrammed into endothelial cells (ECs) using the same strategy. Materials and methods The expression level of endothelial-specific genes and proteins after chemical induction of SCAP was assessed by RT-PCR, western blotting, flow cytometry and immunofluorescence. The in vitro functions of SCAP-derived chemical-induced endothelial cells (SCAP-ECs) were evaluated by tube-like structure formation assay, acetylated low-density lipoprotein (ac-LDL) uptake and NO secretion detection. The proliferation and the migration ability of SCAP-ECs were evaluated by CCK-8 and Transwell assay. LPS stimulation was used to mimic the inflammatory environment in demonstrating the ability of SCAP-ECs to express adhesion molecules. The in vivo Matrigel plug angiogenesis assay was performed to assess the function of SCAP-ECs in generating vascular structures using the immune-deficient mouse model. Results SCAP-ECs expressed upregulated endothelial-specific genes and proteins; displayed endothelial transcriptional networks; exhibited the ability to form functional tubular-like structures, uptake ac-LDL and secrete NO in vitro; and contributed to generate blood vessels in vivo. The SCAP-ECs could also express adhesion molecules in the pro-inflammatory environment and have a similar migration and proliferation ability as HUVECs. Conclusions Our study demonstrates that the set of small molecules and growth factors could significantly promote endothelial transdifferentiation of SCAP, which provides a promising candidate cell source for vascular engineering and treatment of ischemic diseases.


Author(s):  
Fiona L. Cousins ◽  
Ronald Pandoy ◽  
Shiying Jin ◽  
Caroline E. Gargett

The human endometrium undergoes approximately 450 cycles of proliferation, differentiation, shedding and regeneration over a woman’s reproductive lifetime. The regenerative capacity of the endometrium is attributed to stem/progenitor cells residing in the basalis layer of the tissue. Mesenchymal stem cells have been extensively studied in the endometrium, whereas endometrial epithelial stem/progenitor cells have remained more elusive. This review details the discovery of human and mouse endometrial epithelial stem/progenitor cells. It highlights recent significant developments identifying putative markers of these epithelial stem/progenitor cells that reveal their in vivo identity, location in both human and mouse endometrium, raising common but also different viewpoints. The review also outlines the techniques used to identify epithelial stem/progenitor cells, specifically in vitro functional assays and in vivo lineage tracing. We will also discuss their known interactions and hierarchy and known roles in endometrial dynamics across the menstrual or estrous cycle including re-epithelialization at menses and regeneration of the tissue during the proliferative phase. We also detail their potential role in endometrial proliferative disorders such as endometriosis.


Sign in / Sign up

Export Citation Format

Share Document