scholarly journals Left-handed DNA-PAINT for improved superresolution imaging in the nucleus

Author(s):  
H.J. Geertsema ◽  
G. Aimola ◽  
V. Fabricius ◽  
J.P. Fuerste ◽  
B.B. Kaufer ◽  
...  

AbstractDNA point accumulation in nanoscale topography (DNA-PAINT) advances super-resolution microscopy with superior resolution and multiplexing capabilities. However, cellular DNA may interfere with this single-molecule localization technique based on DNA-DNA hybridization. Here, we introduce left-handed DNA (L-DNA) oligomers that do not hybridize to naturally present R-DNA and demonstrate that L-DNA PAINT has the same specificity and multiplexing capability as R-DNA PAINT, but greatly improves specific visualization of nuclear target molecules.

2017 ◽  
Author(s):  
Siân Culley ◽  
David Albrecht ◽  
Caron Jacobs ◽  
Pedro Matos Pereira ◽  
Christophe Leterrier ◽  
...  

Most super-resolution microscopy methods depend on steps that contribute to the formation of image artefacts. Here we present NanoJ-SQUIRREL, an ImageJ-based analytical approach providing a quantitative assessment of super-resolution image quality. By comparing diffraction-limited images and super-resolution equivalents of the same focal volume, this approach generates a quantitative map of super-resolution defects, as well as methods for their correction. To illustrate its broad applicability to super-resolution approaches we apply our method to Localization Microscopy, STED and SIM images of a variety of in-cell structures including microtubules, poxviruses, neuronal actin rings and clathrin coated pits. We particularly focus on single-molecule localisation microscopy, where super-resolution reconstructions often feature imperfections not present in the original data. By showing the quantitative evolution of data quality over these varied sample preparation, acquisition and super-resolution methods we display the potential of NanoJ-SQUIRREL to guide optimization of superresolution imaging parameters.


Genes ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 621 ◽  
Author(s):  
Daniel Nieves ◽  
Katharina Gaus ◽  
Matthew Baker

Super-resolution microscopies, such as single molecule localization microscopy (SMLM), allow the visualization of biomolecules at the nanoscale. The requirement to observe molecules multiple times during an acquisition has pushed the field to explore methods that allow the binding of a fluorophore to a target. This binding is then used to build an image via points accumulation for imaging nanoscale topography (PAINT), which relies on the stochastic binding of a fluorescent ligand instead of the stochastic photo-activation of a permanently bound fluorophore. Recently, systems that use DNA to achieve repeated, transient binding for PAINT imaging have become the cutting edge in SMLM. Here, we review the history of PAINT imaging, with a particular focus on the development of DNA-PAINT. We outline the different variations of DNA-PAINT and their applications for imaging of both DNA origamis and cellular proteins via SMLM. Finally, we reflect on the current challenges for DNA-PAINT imaging going forward.


2021 ◽  
Author(s):  
Kaarjel K Narayanasamy ◽  
Johanna V Rahm ◽  
Siddharth Tourani ◽  
Mike Heilemann

DNA points accumulation for imaging in nanoscale topography (DNA-PAINT) is a super-resolution technique with relatively easy-to-implement multi-target imaging. However, image acquisition is slow as sufficient statistical data has to be generated from spatio-temporally isolated single emitters. Here, we trained the neural network (NN) DeepSTORM to predict fluorophore positions from high emitter density DNA-PAINT data. This achieves image acquisition in one minute. We demonstrate multi-color super-resolution imaging of structure-conserved semi-thin neuronal tissue and imaging of large samples. This improvement can be integrated into any single-molecule microscope and enables fast single-molecule super-resolution microscopy.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jagadish Sankaran ◽  
Harikrushnan Balasubramanian ◽  
Wai Hoh Tang ◽  
Xue Wen Ng ◽  
Adrian Röllin ◽  
...  

AbstractSuper-resolution microscopy and single molecule fluorescence spectroscopy require mutually exclusive experimental strategies optimizing either temporal or spatial resolution. To achieve both, we implement a GPU-supported, camera-based measurement strategy that highly resolves spatial structures (~100 nm), temporal dynamics (~2 ms), and molecular brightness from the exact same data set. Simultaneous super-resolution of spatial and temporal details leads to an improved precision in estimating the diffusion coefficient of the actin binding polypeptide Lifeact and corrects structural artefacts. Multi-parametric analysis of epidermal growth factor receptor (EGFR) and Lifeact suggests that the domain partitioning of EGFR is primarily determined by EGFR-membrane interactions, possibly sub-resolution clustering and inter-EGFR interactions but is largely independent of EGFR-actin interactions. These results demonstrate that pixel-wise cross-correlation of parameters obtained from different techniques on the same data set enables robust physicochemical parameter estimation and provides biological knowledge that cannot be obtained from sequential measurements.


2021 ◽  
Vol 22 (4) ◽  
pp. 1903
Author(s):  
Ivona Kubalová ◽  
Alžběta Němečková ◽  
Klaus Weisshart ◽  
Eva Hřibová ◽  
Veit Schubert

The importance of fluorescence light microscopy for understanding cellular and sub-cellular structures and functions is undeniable. However, the resolution is limited by light diffraction (~200–250 nm laterally, ~500–700 nm axially). Meanwhile, super-resolution microscopy, such as structured illumination microscopy (SIM), is being applied more and more to overcome this restriction. Instead, super-resolution by stimulated emission depletion (STED) microscopy achieving a resolution of ~50 nm laterally and ~130 nm axially has not yet frequently been applied in plant cell research due to the required specific sample preparation and stable dye staining. Single-molecule localization microscopy (SMLM) including photoactivated localization microscopy (PALM) has not yet been widely used, although this nanoscopic technique allows even the detection of single molecules. In this study, we compared protein imaging within metaphase chromosomes of barley via conventional wide-field and confocal microscopy, and the sub-diffraction methods SIM, STED, and SMLM. The chromosomes were labeled by DAPI (4′,6-diamidino-2-phenylindol), a DNA-specific dye, and with antibodies against topoisomerase IIα (Topo II), a protein important for correct chromatin condensation. Compared to the diffraction-limited methods, the combination of the three different super-resolution imaging techniques delivered tremendous additional insights into the plant chromosome architecture through the achieved increased resolution.


2021 ◽  
pp. 2101099
Author(s):  
Izabela Kamińska ◽  
Johann Bohlen ◽  
Renukka Yaadav ◽  
Patrick Schüler ◽  
Mario Raab ◽  
...  

2021 ◽  
Author(s):  
Anders K Engdahl ◽  
Oleg Grauberger ◽  
Mark Schüttpelz ◽  
Thomas Huser

Photoinduced off-switching of organic fluorophores is routinely used in super-resolution microscopy to separate and localize single fluorescent molecules, but the method typically relies on the use of complex imaging buffers. The most common buffers use primary thiols to reversibly reduce excited fluorophores to a non-fluorescent dark state, but these thiols have a limited shelf life and additionally require high illumination intensities in order to efficiently switch the emission of fluorophores. Recently a high-index, thiol-containing imaging buffer emerged which used sodium sulfite as an oxygen scavenger, but the switching properties of sulfite was not reported on. Here, we show that sodium sulfite in common buffer solutions reacts with fluorescent dyes, such as Alexa Fluor 647 and Alexa Fluor 488 under low to medium intensity illumination to form a semi-stable dark state. The duration of this dark state can be tuned by adding glycerol to the buffer. This simplifies the realization of different super-resolution microscopy modalities such as direct Stochastic Reconstruction Microscopy (dSTORM) and Super-resolution Optical Fluctuation Microscopy (SOFI). We characterize sulfite as a switching agent and compare it to the two most common switching agents by imaging cytoskeleton structures such as microtubules and the actin cytoskeleton in human osteosarcoma cells.


2021 ◽  
Vol 33 (42) ◽  
pp. 2105719
Author(s):  
Izabela Kamińska ◽  
Johann Bohlen ◽  
Renukka Yaadav ◽  
Patrick Schüler ◽  
Mario Raab ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document