scholarly journals Air Pollution Increases Influenza Hospitalizations

Author(s):  
Gregor Singer ◽  
Joshua Graff Zivin ◽  
Matthew Neidell ◽  
Nicholas Sanders

AbstractSeasonal influenza is a recurring health burden shared widely across the globe. We study whether air quality affects the occurrence of severe influenza cases that require inpatient hospitalization. Using longitudinal information on local air quality and hospital admissions across the United States, we find that poor air quality increases the incidence of significant influenza hospital admissions. Effects diminish in years with greater influenza vaccine effectiveness. Apart from increasing vaccination rates, improving air quality may help reduce the spread and severity of influenza.

2012 ◽  
Vol 599 ◽  
pp. 367-371
Author(s):  
Hua Guo ◽  
Chao Liu ◽  
Xi Ping Zhao ◽  
Yin Shan Wu

The concentration of CO2 and PM2.5 were monitored at XiaoYang barbecue bar of Jianshe west road in Xi’an. Then we analyze the daily variation characteristics of CO2 and PM2.5 concentration between peak hours of dining and the common hours. Using GBT18883-2002 and the United States national air quality, Air quality at XiaoYang barbecue bar is evaluated by the data from the monitoring, which shows that the air quality of some barbecue bar in Xi’an is not in accord with the national standard. Air pollution is serious. so much more attention should be paid.


2018 ◽  
Author(s):  
Shawn P. Urbanski ◽  
Matt C. Reeves ◽  
Rachel Corley ◽  
Robin Silverstein ◽  
Wei Min Hao

Abstract. Wildfires are a major source of air pollutants in the United States. Wildfire smoke can trigger severe pollution episodes with substantial impacts on public health. In addition to acute episodes, wildfires can have a marginal effect on air quality at significant distances from the source presenting significant challenges to air regulators’ efforts to meet National Ambient Air Quality Standards. Improved emission estimates are needed to quantify the contribution of wildfires to air pollution and thereby inform decision making activities related to the control and regulation of anthropogenic air pollution sources. To address the need of air regulators and land managers for improved wildfire emission estimates we developed the Missoula Fire Lab Emission Inventory (MFLEI), a retrospective, daily wildfire emission inventory for the contiguous United States (CONUS). MFLEI was produced using multiple datasets of fire activity and burned area, a newly developed wildland fuels map and an updated emission factor database. Daily burned area is based on a combination of Monitoring Trends in Burn Severity (MTBS) data, Moderate Resolution Imaging Spectroradiometer (MODIS) burned area and active fire detection products, incident fire perimeters, and a spatial wildfire occurrence database. The fuel type classification map is a merger of a national forest type map, produced by the USDA Forest Service (USFS) Forest Inventory and Analysis (FIA) program and the Geospatial Technology and Applications Center (GTAC), with a shrub and grassland vegetation map developed by the USFS Missoula Forestry Sciences Laboratory. Forest fuel loading is from a fuel classification developed from a large set (> 26 000 sites) of FIA surface fuel measurements. Herbaceous fuel loading is estimated using site specific parameters with normalized differenced vegetation index from MODIS. Shrub fuel loading is quantified by applying numerous allometric equations linking stand structure and composition to biomass and fuels, with the structure and composition data derived from geospatial data layers of the LANDFIRE Project. MFLEI provides estimates of CONUS daily wildfire burned area, fuel consumption, and pollutant emissions at a 250 m × 250 m resolution for 2003–2015. A spatially aggregated emission product (10 km × 10 km, 1 d) with uncertainty estimates is included to provide a representation of emission uncertainties at a spatial scale pertinent to air quality modelling. MFLEI will be updated, with recent years, as the MTBS burned area product becomes available. The data associated with this article can be found at https://doi.org/10.2737/RDS-2017-0039.


Pained ◽  
2020 ◽  
pp. 193-196
Author(s):  
Michael D. Stein ◽  
Sandro Galea

This chapter focuses on the improvement of air quality in the United States. Laws such as the Clean Air Act (CAA), signed in 1970, resulted in a drastic reduction in air pollution. Since then, emissions have decreased by 50%. Despite these advances, adverse health effects associated with long-term exposure to air pollution continue. Researchers examined the health effects of pollution in a nationwide cohort of 61 million Medicare beneficiaries from 2000 to 2012. They created maps by linking Medicare mortality data, zip codes, and previously published estimates of ozone and fine particle pollutants (PM2.5). The study’s authors found that long-term exposures to fine particle pollutants and ozone, even at levels below current nationally “acceptable” standards, were associated with an increased risk of death. Persons with low incomes showed the highest risks associated with exposures. Vast improvements in air quality have been made in the past decades in the United States, but this study shows that air quality adhering to National Ambient Air Quality Standards still exposes Americans to levels of pollution that can be lethal over many years of exposure. Thus, air quality standards must be revisited in order to alleviate the burden on the most vulnerable populations.


2018 ◽  
Vol 10 (4) ◽  
pp. 2241-2274 ◽  
Author(s):  
Shawn P. Urbanski ◽  
Matt C. Reeves ◽  
Rachel E. Corley ◽  
Robin P. Silverstein ◽  
Wei Min Hao

Abstract. Wildfires are a major source of air pollutants in the United States. Wildfire smoke can trigger severe pollution episodes with substantial impacts on public health. In addition to acute episodes, wildfires can have a marginal effect on air quality at significant distances from the source, presenting significant challenges to air regulators' efforts to meet National Ambient Air Quality Standards. Improved emission estimates are needed to quantify the contribution of wildfires to air pollution and thereby inform decision-making activities related to the control and regulation of anthropogenic air pollution sources. To address the need of air regulators and land managers for improved wildfire emission estimates, we developed the Missoula Fire Lab Emission Inventory (MFLEI), a retrospective, daily wildfire emission inventory for the contiguous United States (CONUS). MFLEI was produced using multiple datasets of fire activity and burned area, a newly developed wildland fuels map and an updated emission factor database. Daily burned area is based on a combination of Monitoring Trends in Burn Severity (MTBS) data, Moderate Resolution Imaging Spectroradiometer (MODIS) burned area and active fire detection products, incident fire perimeters, and a spatial wildfire occurrence database. The fuel type classification map is a merger of a national forest type map, produced by the USDA Forest Service (USFS) Forest Inventory and Analysis (FIA) program and the Geospatial Technology and Applications Center (GTAC), with a shrub and grassland vegetation map developed by the USFS Missoula Forestry Sciences Laboratory. Forest fuel loading is from a fuel classification developed from a large set (> 26 000 sites) of FIA surface fuel measurements. Herbaceous fuel loading is estimated using site-specific parameters with the Normalized Difference Vegetation Index from MODIS. Shrub fuel loading is quantified by applying numerous allometric equations linking stand structure and composition to biomass and fuels, with the structure and composition data derived from geospatial data layers of the LANDFIRE project. MFLEI provides estimates of CONUS daily wildfire burned area, fuel consumption, and pollutant emissions at a 250 m × 250 m resolution for 2003–2015. A spatially aggregated emission product (10 km × 10 km, 1 day) with uncertainty estimates is included to provide a representation of emission uncertainties at a spatial scale pertinent to air quality modeling. MFLEI will be updated, with recent years, as the MTBS burned area product becomes available. The data associated with this article can be found at https://doi.org/10.2737/RDS-2017-0039 (Urbanski et al., 2017).


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Mahdieh Danesh Yazdi ◽  
Qian Di ◽  
Weeberb Joao Requia ◽  
Yaguang Wei ◽  
Liuhua Shi ◽  
...  

2020 ◽  
Vol 1 (3) ◽  
pp. 100047 ◽  
Author(s):  
Donghai Liang ◽  
Liuhua Shi ◽  
Jingxuan Zhao ◽  
Pengfei Liu ◽  
Jeremy A. Sarnat ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document