scholarly journals PLK1- and PLK4-mediated asymmetric mitotic centrosome size and positioning in the early zebrafish embryo

2020 ◽  
Author(s):  
LI Rathbun ◽  
AA Aljiboury ◽  
X Bai ◽  
J Manikas ◽  
JD Amack ◽  
...  

SUMMARYFactors that regulate mitotic spindle positioning have been elucidated in vitro, however it remains unclear how a spindle is placed within the confines of extremely large cells. Our studies identified a uniquely large centrosome structure in the early zebrafish embryo (246.44±11.93μm2 mitotic centrosome in a 126.86±0.35μm diameter cell), whereas C. elegans centrosomes are notably smaller (6.75±0.28μm2 mitotic centrosome in a 55.83±1.04μm diameter cell). During early embryonic cell divisions, cell size changes rapidly in C. elegans and zebrafish embryos. Notably, mitotic centrosome area scales closely with changing cell size compared to changes in spindle length for both organisms. One interesting difference between the two is that mitotic centrosomes are asymmetric in size across embryonic zebrafish spindles, with the larger mitotic centrosome being 2.14±0.13-fold larger in size than the smaller. The largest mitotic centrosome is placed towards the embryo center in a Polo-Like Kinase (PLK) 1 and PLK4 dependent manner 87.14±4.16% of the time. We propose a model in which uniquely large centrosomes direct spindle placement within the disproportionately large zebrafish embryo cells to orchestrate cell divisions during early embryogenesis.

2016 ◽  
Author(s):  
Sara Carvalhal ◽  
Michelle Stevense ◽  
Katrin Koehler ◽  
Ronald Naumann ◽  
Angela Huebner ◽  
...  

Asymmetric cell divisions depend upon the precise placement of the mitotic spindle. In mammalian oocytes, spindles assemble close to the cell center but chromosome segregation takes place at the cell periphery where half of the chromosomes are expelled into small, non-developing polar bodies at anaphases. By dividing so asymmetrically, most of the cytoplasmic content within the oocyte is preserved, which is critical for successful fertilization and early development. Recently, we determined that the nucleoporin ALADIN participates in spindle assembly in somatic cells, and we have also shown that female mice homozygous deficient for ALADIN are sterile. In this study we show that this protein is involved in specific meiotic stages including meiotic resumption, spindle assembly, and spindle positioning. In the absence of ALADIN, polar body extrusion is impaired in a majority of oocytes due to problems in spindle orientation prior to the first meiotic anaphase. Those few oocytes that can mature far enough to be fertilized in vitro are unable to support embryonic development beyond the two-cell stage. Overall, we find that ALADIN is critical for oocyte maturation and appears to be far more essential for this process than for somatic cell divisions.


2020 ◽  
Vol 220 (1) ◽  
Author(s):  
Gabriel M. Gihana ◽  
Arthur A. Cross-Najafi ◽  
Soni Lacefield

During G1 in budding yeast, the Cdc42 GTPase establishes a polar front, along which actin is recruited to direct secretion for bud formation. Cdc42 localizes at the bud cortex and then redistributes between mother and daughter in anaphase. The molecular mechanisms that terminate Cdc42 bud-localized activity during mitosis are poorly understood. We demonstrate that the activity of the Cdc14 phosphatase, released through the mitotic exit network, is required for Cdc42 redistribution between mother and bud. Induced Cdc14 nucleolar release results in premature Cdc42 redistribution between mother and bud. Inhibition of Cdc14 causes persistence of Cdc42 bud localization, which perturbs normal cell size and spindle positioning. Bem3, a Cdc42 GAP, binds Cdc14 and is dephosphorylated at late anaphase in a Cdc14-dependent manner. We propose that Cdc14 dephosphorylates and activates Bem3 to allow Cdc42 inactivation and redistribution. Our results uncover a mechanism through which Cdc14 regulates the spatiotemporal activity of Cdc42 to maintain normal cell size at cytokinesis.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Thomas JR Frith ◽  
Ilaria Granata ◽  
Matthew Wind ◽  
Erin Stout ◽  
Oliver Thompson ◽  
...  

The neural crest (NC) is a multipotent embryonic cell population that generates distinct cell types in an axial position-dependent manner. The production of NC cells from human pluripotent stem cells (hPSCs) is a valuable approach to study human NC biology. However, the origin of human trunk NC remains undefined and current in vitro differentiation strategies induce only a modest yield of trunk NC cells. Here we show that hPSC-derived axial progenitors, the posteriorly-located drivers of embryonic axis elongation, give rise to trunk NC cells and their derivatives. Moreover, we define the molecular signatures associated with the emergence of human NC cells of distinct axial identities in vitro. Collectively, our findings indicate that there are two routes toward a human post-cranial NC state: the birth of cardiac and vagal NC is facilitated by retinoic acid-induced posteriorisation of an anterior precursor whereas trunk NC arises within a pool of posterior axial progenitors.


2017 ◽  
Author(s):  
Abigail R. Gerhold ◽  
Vincent Poupart ◽  
Jean-Claude Labbé ◽  
Paul S. Maddox

AbstractThe spindle assembly checkpoint (SAC) is a conserved mitotic regulator that preserves genome stability. Despite its central role in preserving the fidelity of mitosis, the strength of the SAC varies widely between cell types. How the SAC is adapted to different cellular contexts remains largely unknown. Here we show that both cell size and cell fate impact SAC strength. While smaller cells have a stronger SAC, cells with a germline fate show increased SAC activity relative to their somatic counterparts across all cell sizes. We find that enhanced SAC activity in the germline blastomere P1 requires proper specification of cell fate downstream of the conserved PAR polarity proteins, supporting a model in which checkpoint factors are distributed asymmetrically during early germ cell divisions. Our results indicate that size scaling of SAC activity is modulated by cell fate and reveal a novel interaction between asymmetric cell division and the SAC.


1988 ◽  
Vol 255 (3) ◽  
pp. 991-998 ◽  
Author(s):  
W McDowell ◽  
A Tlusty ◽  
R Rott ◽  
J N BeMiller ◽  
J A Bohn ◽  
...  

The effects of alpha-D-mannopyranosylmethyl-p-nitrophenyltriazene (MMNT) on mannosidases involved in asparagine-linked oligosaccharide processing were investigated. MMNT was found to inhibit the activity of rat liver Golgi alpha-mannosidase I in a concentration-dependent manner (50% inhibition with 0.18 mM-MMNT), whereas rat liver endoplasmic-reticulum alpha-mannosidase appeared to be resistant (less than 5% inhibition at 1 mM-MMNT). Jack-bean alpha-mannosidase was also sensitive to inhibition by MMNT (50% inhibition with 0.32 mM-MMNT). Treatment of influenza-virus-infected chick-embryo cells with 1 mM-MMNT led to a decrease in the formation of complex-type asparagine-linked oligosaccharides and an accumulation of high-mannose-type oligosaccharides with the composition Man8(GlcNAc)2 and Man7(GlcNAc)2 on the viral glycoproteins. The biological activities of influenza-virus haemagglutinin and neuraminidase synthesized in the presence of 1 mM-MMNT remained unchanged, but the virus was less infectious than the control.


2017 ◽  
Author(s):  
Daniel José Barbosa ◽  
Joana Duro ◽  
Dhanya K. Cheerambathur ◽  
Bram Prevo ◽  
Ana Xavier Carvalho ◽  
...  

ABSTRACTThe microtubule-based motor dynein generates pulling forces for centrosome centration and mitotic spindle positioning in animal cells. How the essential dynein activator dynactin regulates these functions of the motor is incompletely understood. Here, we dissect the role of dynactin’s microtubule binding activity, located in p150’s CAP-Gly domain and an adjacent basic patch, in the C. elegans zygote. Using precise mutants engineered by genome editing, we show that microtubule tip tracking of dynein-dynactin is dispensable for targeting the motor to the cell cortex and for generating cortical pulling forces. Instead, p150 CAP-Gly mutants inhibit cytoplasmic pulling forces responsible for centration of centrosomes and attached pronuclei. The centration defects are mimicked by mutations of the C-terminal tyrosine of α-tubulin, and both p150 CAP-Gly and tubulin tyrosination mutants decrease the frequency of organelle transport from the cell periphery towards centrosomes during centration. In light of recent work on dynein-dynactin motility in vitro, our results suggest that p150 GAP-Gly domain binding to tyrosinated microtubules promotes initiation of dynein-mediated organelle transport in the dividing embryo, and that this function of dynactin is important for generating robust cytoplasmic pulling forces for centrosome centration.


2008 ◽  
Vol 20 (1) ◽  
pp. 181
Author(s):  
M. R. Hudson ◽  
G. E. Seidel Jr ◽  
E. L. Squires ◽  
B. E. Spizzirri ◽  
D. J. Walker ◽  
...  

In vitro fertilization in the horse does not work reliably. Several methods of capacitating sperm in other species fail in the horse. The goal of this experiment was to develop a method to capacitate equine spermatozoa using calcium ionophore A23187 or phosphatidylcholine 12 (PC12). We also studied effects of maturing bovine oocytes for 24 or 28 h on fertilizability by capacitated equine sperm, hypothesizing that longer maturation would yield oocytes more easily fertilized by equine spermatozoa. Two sets of bovine oocytes were aspirated from 3 to 8 mm follicles of abattoir ovaries 4 h apart, but fertilized at the same time. On the day of fertilization, semen from 1 of 3 stallions was collected, evaluated, and centrifuged through 33% Percoll to remove seminal plasma. The resultant pellet was extended to 5 × 107 cells mL–1 in M199 containing 0.6% BSA, 2 mm caffeine, and 5 mm CaCl2. Sperm were treated with A23187 (1 or 3 μm) or PC12 (40 or 70 μm) or both A23187 and PC12 (1 μm/40 μm) in 500- μL aliquots. Sperm were incubated at 39°C for 10 min (for A23187 and combination treatments) or 15 min (for PC12 treatments), and then diluted 1:20 for fertilization. Oocytes from each maturation time were fertilized using the same semen preparation for each treatment. Oocytes and sperm were incubated together for 18 h in FCDM in 5% CO2 at 39°C (De La Torre-Sanchez et al. 2006 Reprod. Fertil. Devel. 18, 585–596). Presumptive zygotes were cultured for 30 h in CDM-1, vortexed to remove cumulus cells, and evaluated for cleavage. Oocytes were also co-incubated with killed sperm to determine the level of parthenogenesis. Cleaved embryos were stained with orcein to ensure that each cell had a nucleus. Number of cell divisions were recorded as 0 for a 1-cell, 1 for a 2-cell, 1.5 for a 3-cell, etc. More oocytes cleaved after 28 h (18%) than 24 h (14%) maturation (P < 0.01). Sperm of Stallion 1 resulted in higher overall cleavage (24%) than Stallions 2 or 3 (11 and 12%; P < 0.01). Highest cleavage was seen with 28 h maturation and 70 μm PC12 and 3 μm A23187 (27 and 24%, respectively). The most cell divisions were seen with 28 h maturation and 70 μm PC12 (0.48); 28 of the 49 cleaved in this treatment reached ≥4-cell stage. In conclusion, both A23187 and PC12 were able to capacitate equine sperm in a dose-dependent manner as determined from cleavage of bovine oocytes matured for 28 h; maturation for the conventional 24 h was an inferior model for this purpose. Table 1. Mean responses of bovine oocytes fertilized by equine sperm


1997 ◽  
Vol 52 (7-8) ◽  
pp. 466-474 ◽  
Author(s):  
Karlheinz Tempel ◽  
Christina von Zallinger

Chicken embryo cells were treated with caffeine (0.5-8.0 mᴍ) alone or combined with various chemical and physical DNA - and/or chromatin-interactive agents. Analytical procedures comprised scheduled (SDS) and unscheduled (UDS) DNA synthesis, RNA synthesis (RNS), the activities of O6-alkylguanine-DNA alkyltransferase (AT) and poly (ADP-ribose) polymerase (PARP) as well as nucleoid sedimentation. Additional investigations were done in rat thymic and splenic cells. The effect of caffeine on DNase-I activity served as an in vitro-model system.- When present in the PARP-, SDS-, UDS- and RNS-assays, caffeine inhibited the corresponding tracer (14C-NAD, dT-3H, 3H-U) incorporation in a dose-dependent manner. The AT activity was slightly stimulated. At concentrations of 0.06-0.3 mᴍ, caffeine inhibited DNase-I activity by excess substrate. No specific effects of caffeine could be shown by nucleoid sedimentation.- Besides the reduced permeability of the cells to nucleic acid precursors, the results obtained with the PARP- and DNase-I assays give evidence for the formation of a DNA-caffeine adduct as a prominent mechanism of cellular caffeine effects including DNA repair inhibition.


2018 ◽  
Author(s):  
Thomas J. R. Frith ◽  
Ilaria Granata ◽  
Erin Stout ◽  
Matthew Wind ◽  
Oliver Thompson ◽  
...  

AbstractThe neural crest (NC) is a multipotent embryonic cell population generating distinct cell types in an axial position-dependent manner. The production of NC cells from human pluripotent stem cells (hPSCs) is a valuable approach to study human NC biology. However, the origin of human trunk NC remains undefined and therefore current in vitro differentiation strategies induce only a modest yield of trunk NC cells. Here we show that hPSC-derived axial progenitors, the posteriorly-located drivers of embryonic axis elongation, give rise to trunk NC cells and their derivatives. Moreover, we define the molecular signatures associated with the emergence of human NC cells of distinct axial identities in vitro. Collectively, our findings indicate that there are two routes toward a human post-cranial NC state: the birth of cardiac and vagal NC is facilitated by retinoic acid-induced posteriorisation of an anterior precursor whereas trunk NC arises within a pool of posterior axial progenitors.


2021 ◽  
Author(s):  
Teije C Middelkoop ◽  
Julia Garcia-Baucells ◽  
Porfirio Quintero-Cadena ◽  
Lokesh G. Pimpale ◽  
Shahrzad Yazdi ◽  
...  

Proper left-right symmetry breaking is essential for animal development and in many species the actin cytoskeleton plays an instrumental role in this process. Active torque generation in the actomyosin layer promotes left-right symmetry breaking in C. elegans embryos by driving chiral counter-rotating cortical flows. While both Formins and Myosins have been implied in left-right symmetry breaking, and both can rotate actin filaments in vitro, it remains unclear if active torques in the actomyosin cortex are generated by Formins, Myosins, or both. We combined the strength of C. elegans genetics with quantitative imaging and thin film, chiral active fluid theory to show that, while Non-Muscle Myosin II activity drives cortical actomyosin flows, it is permissive for chiral counter-rotation and dispensable for chiral symmetry breaking of cortical flows. Instead, we find that CYK-1/Formin activation in RhoA foci is instructive for chiral counter-rotation and promotes in-plane, active torque generation in the actomyosin cortex. Notably, we observe that artificially generated large active RhoA patches undergo rotations with consistent handedness in a CYK-1/Formin-dependent manner. Altogether, we conclude that CYK-1/Formin-dependent active torque generation facilitates chiral symmetry breaking of actomyosin flows and drives organismal left-right symmetry breaking in the nematode worm.


Sign in / Sign up

Export Citation Format

Share Document