scholarly journals Klf4 methylated by Prmt1 is required for lineage segregation of epiblast and primitive endoderm

2020 ◽  
Author(s):  
Zhen-yu Zuo ◽  
Guang-hui Yang ◽  
Hai-yu Wang ◽  
Yan-jun Zhang ◽  
Yun Cai ◽  
...  

AbstractThe second cell fate decision in the early stage of mammalian embryonic development is pivotal; however, the underlying molecular mechanism is largely unexplored. Here, we report that Prmt1 acts as an important regulator in primitive endoderm (PrE) formation. First, an embryonic chimeric assay showed that Prmt1 inhibition induces the integration of mouse embryonic stem cells (ESCs) into the PrE. Second, Prmt1 inhibition promotes Gata6 expression in both mouse blastocysts and ESCs. Single-cell RNA sequencing and flow cytometry assays demonstrated that Prmt1 depletion in ESCs contributes to an emerging cluster, where PrE genes are upregulated significantly. Furthermore, the efficiency of extraembryonic endoderm stem cell induction increased in Prmt1-depleted ESCs. Finally, we showed that the pluripotency factor Klf4 methylated at Arg396 by Prmt1 is required for recruitment of the repressive mSin3a/HDAC complex to silence PrE genes. Therefore, we reveal a regulatory mechanism for cell fate decisions centered on Prmt1-mediated Klf4 methylation.

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Zhong-Yan Chen ◽  
Fei Chen ◽  
Nan Cao ◽  
Zhi-Wen Zhou ◽  
Huang-Tian Yang

MicroRNAs (miRNAs) play important roles in cell fate decisions. However, the miRNAs and their targets involved in the regulation of cardiac lineage specification are largely unexplored. Here, we report novel functions of miR-142-3p in the regulation of cardiomyocyte differentiation from mouse embryonic stem cells (mESCs). With a miRNA array screen, we identified a number of miRNAs significantly changed during mESC differentiation into the mesodermal and cardiac progenitor cells, and miR-142-3p was one among the markedly downregulated miRNAs. Ectopic expression and inhibition of miR-142-3p did not alter the characteristics of undifferentiated ESCs, whereas ectopic expression of miR-142-3p impaired cardiomyocyte formation. In addition, ectopic expression of miR-142-3p inhibited the expression of a cardiac mesodermal marker gene Mesp1 and downstream cardiac transcription factors Nkx2.5, Tbx5, and Mef2c but not the expression of three germ layer-specific genes. We further demonstrated that miR-142-3p targeted the 3′-untranslated region of Mef2c. These results reveal miR-142-3p as an important regulator of early cardiomyocyte differentiation. Our findings provide new knowledge for further understanding of roles and mechanisms of miRNAs as critical regulators of cardiomyocyte differentiation.


Author(s):  
Yuting Fu ◽  
Fangyuan Liu ◽  
Shuo Cao ◽  
Jia Zhang ◽  
Huizhi Wang ◽  
...  

3-hydroxybutyrate dehydrogenase-2 (Bdh2), a short-chain dehydrogenase, catalyzes a rate-limiting step in the biogenesis of the mammalian siderophore, playing a key role in iron homeostasis, energy metabolism and apoptosis. However, the function of Bdh2 in embryonic stem cells (ESCs) remains unknown. To gain insights into the role of Bdh2 on pluripotency and cell fate decisions of mouse ESCs, we generated Bdh2 homozygous knockout lines for both mouse advanced embryonic stem cell (ASC) and ESC using CRISPR/Cas9 genome editing technology. Bdh2 deficiency in both ASCs and ESCs had no effect on expression of core pluripotent transcription factors and alkaline phosphatase activity, suggesting dispensability of Bdh2 for self-renewal and pluripotency of ESCs. Interestingly, cells with Bdh2 deficiency exhibited potency of endoderm differentiation in vitro; with upregulated endoderm associated genes revealed by RNA-seq and RT-qPCR. We further demonstrate that Bdh2 loss inhibited expression of multiple methyltransferases (DNMTs) at both RNA and protein level, suggesting that Bdh2 may be essentially required to maintain DNA methylation in ASCs and ESCs. Overall, this study provides valuable data and resources for understanding how Bdh2 regulate earliest cell fate decision and DNA methylation in ASCs/ESCs.


Genetics ◽  
1999 ◽  
Vol 153 (4) ◽  
pp. 1641-1654 ◽  
Author(s):  
Hanna Fares ◽  
Iva Greenwald

Abstract Ligands present on neighboring cells activate receptors of the LIN-12/Notch family by inducing a proteolytic cleavage event that releases the intracellular domain. Mutations that appear to eliminate sel-5 activity are able to suppress constitutive activity of lin-12(d) mutations that are point mutations in the extracellular domain of LIN-12, but cannot suppress lin-12(intra), the untethered intracellular domain. These results suggest that sel-5 acts prior to or during ligand-dependent release of the intracellular domain. In addition, sel-5 suppression of lin-12(d) mutations is tissue specific: loss of sel-5 activity can suppress defects in the anchor cell/ventral uterine precursor cell fate decision and a sex myoblast/coelomocyte decision, but cannot suppress defects in two different ventral hypodermal cell fate decisions in hermaphrodites and males. sel-5 encodes at least two proteins, from alternatively spliced mRNAs, that share an amino-terminal region and differ in the carboxy-terminal region. The amino-terminal region contains the hallmarks of a serine/threonine kinase domain, which is most similar to mammalian GAK1 and yeast Pak1p.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tim Liebisch ◽  
Armin Drusko ◽  
Biena Mathew ◽  
Ernst H. K. Stelzer ◽  
Sabine C. Fischer ◽  
...  

AbstractDuring the mammalian preimplantation phase, cells undergo two subsequent cell fate decisions. During the first decision, the trophectoderm and the inner cell mass are formed. Subsequently, the inner cell mass segregates into the epiblast and the primitive endoderm. Inner cell mass organoids represent an experimental model system, mimicking the second cell fate decision. It has been shown that cells of the same fate tend to cluster stronger than expected for random cell fate decisions. Three major processes are hypothesised to contribute to the cell fate arrangements: (1) chemical signalling; (2) cell sorting; and (3) cell proliferation. In order to quantify the influence of cell proliferation on the observed cell lineage type clustering, we developed an agent-based model accounting for mechanical cell–cell interaction, i.e. adhesion and repulsion, cell division, stochastic cell fate decision and cell fate heredity. The model supports the hypothesis that initial cell fate acquisition is a stochastically driven process, taking place in the early development of inner cell mass organoids. Further, we show that the observed neighbourhood structures can emerge solely due to cell fate heredity during cell division.


PLoS Biology ◽  
2009 ◽  
Vol 7 (7) ◽  
pp. e1000149 ◽  
Author(s):  
Tibor Kalmar ◽  
Chea Lim ◽  
Penelope Hayward ◽  
Silvia Muñoz-Descalzo ◽  
Jennifer Nichols ◽  
...  

PLoS Genetics ◽  
2011 ◽  
Vol 7 (6) ◽  
pp. e1002130 ◽  
Author(s):  
Kian Leong Lee ◽  
Sandy Keat Lim ◽  
Yuriy Lvovich Orlov ◽  
Le Yau Yit ◽  
Henry Yang ◽  
...  

PLoS Genetics ◽  
2021 ◽  
Vol 17 (6) ◽  
pp. e1009146
Author(s):  
Jonathan M. Pojer ◽  
Abdul Jabbar Saiful Hilmi ◽  
Shu Kondo ◽  
Kieran F. Harvey

The Hippo pathway is an important regulator of organ growth and cell fate. In the R8 photoreceptor cells of the Drosophila melanogaster eye, the Hippo pathway controls the fate choice between one of two subtypes that express either the blue light-sensitive Rhodopsin 5 (Hippo inactive R8 subtype) or the green light-sensitive Rhodopsin 6 (Hippo active R8 subtype). The degree to which the mechanism of Hippo signal transduction and the proteins that mediate it are conserved in organ growth and R8 cell fate choice is currently unclear. Here, we identify Crumbs and the apical spectrin cytoskeleton as regulators of R8 cell fate. By contrast, other proteins that influence Hippo-dependent organ growth, such as the basolateral spectrin cytoskeleton and Ajuba, are dispensable for the R8 cell fate choice. Surprisingly, Crumbs promotes the Rhodopsin 5 cell fate, which is driven by Yorkie, rather than the Rhodopsin 6 cell fate, which is driven by Warts and the Hippo pathway, which contrasts with its impact on Hippo activity in organ growth. Furthermore, neither the apical spectrin cytoskeleton nor Crumbs appear to regulate the Hippo pathway through mechanisms that have been observed in growing organs. Together, these results show that only a subset of Hippo pathway proteins regulate the R8 binary cell fate decision and that aspects of Hippo signalling differ between growing organs and post-mitotic R8 cells.


Sign in / Sign up

Export Citation Format

Share Document