nanog expression
Recently Published Documents


TOTAL DOCUMENTS

135
(FIVE YEARS 39)

H-INDEX

27
(FIVE YEARS 3)

2021 ◽  
Vol 11 ◽  
Author(s):  
Jing-Hua Liu ◽  
Wen-Ting Li ◽  
Yue Yang ◽  
Yan-Bo Qi ◽  
Yu Cheng ◽  
...  

Chemoresistance is a severe clinical challenge in breast cancer. Hypoxia and cancer stem cells (CSCs) contribute to the paclitaxel (PTX) resistance, but the molecular mechanisms are still elusive. MicorRNAs (miRNA) have been considered a promising therapeutic strategy in various cancers. Here, we identified the crucial function of miR-526b-3p in regulating PTX resistance and CSC properties. Our data demonstrated that miR-526b-3p mimic repressed the cell viability of breast cancer cells. The counts of Edu-positive cells were reduced by miR-526b-3p in breast cancer cells. Meanwhile, the apoptosis of breast cancer cells was induced by miR-526b-3p. Tumorigenicity analysis in the nude mice confirmed that miR-526b-3p attenuated the breast cancer cell growth in vivo. Significantly, hypoxia could enhance IC50 value of PTX in breast cancer cells. IC50 value of PTX was induced in breast cancer mammospheres. The hypoxia-inducible factor 2α (HIF-2α) expression was enhanced, but miR-526b-3p expression was repressed under hypoxia in breast cancer cells. Also, breast cancer mammospheres presented high HIF-2α expression and low miR-526b-3p expression. The inhibition of miR-526b-3p enhanced the IC50 value of PTX in breast cancer cells. MiR-526b-3p inhibitor enhanced the colony formation counts of PTX-treated breast cancer cells. The treatment of miR-526b-3p mimic suppressed the sphere formation counts of breast cancer cells and inhibited ALDH1 and Nanog expression. MiR-526b-3p was able to target HIF-2α in the cells. The overexpression enhanced but miR-526b-3p reduced the IC50 value of PTX in breast cancer cells, in which the overexpression of HIF-2α could rescue the miR-526b-3p-inhibited IC50 value of PTX. Overexpression of HIF-2α reversed miR-526b-3p-regulated apoptosis, colony formation ability, and ALDH1 and Nanog expression in the cells. Interestingly, the overexpression of HIF-2α induced but miR-526b-3p repressed the expression of HIF-2α, Hey2, and Notch in PTX-treated breast cancer cells, while HIF-2α could reverse the effect of miR-526b-3p. In conclusion, miR-526b-3p attenuated breast cancer stem cell properties and chemoresistance by targeting HIF-2α/Notch signaling. MiR-526b-3p may be utilized in the relieving chemoresistance in breast cancer.


2021 ◽  
Vol 23 (1) ◽  
pp. 46
Author(s):  
Wing-Keung Chu ◽  
Li-Man Hung ◽  
Chun-Wei Hou ◽  
Jan-Kan Chen

The pluripotent transcription factor NANOG is essential for maintaining embryonic stem cells and driving tumorigenesis. We previously showed that PKC activity is involved in the regulation of NANOG expression. To explore the possible involvement of microRNAs in regulating the expression of key pluripotency factors, we performed a genome-wide analysis of microRNA expression in the embryonal carcinoma cell line NT2/D1 in the presence of the PKC activator, PMA. We found that MIR630 was significantly upregulated in PMA-treated cells. Experimentally, we showed that transfection of MIR630 mimic into embryonal carcinoma cell lines directly targeted the 3′UTR of OCT4, SOX2, and NANOG and markedly suppressed their expression. RNAhybrid and RNA22 algorithms were used to predict miRNA target sites in the NANOG 3’UTR, four possible target sites of MIR630 were identified. To examine the functional interaction between MIR630 and NANOG mRNA, the predicted MIR630 target sites in the NANOG 3’UTR were deleted and the activity of the reporters were compared. After targeted mutation of the predicted MIR630 target sites, the MIR630 mimic inhibited NANOG significantly less than the wild-type reporters. It is worth noting that mutation of a single putative binding site in the 3’UTR of NANOG did not completely abolish MIR630-mediated suppression, suggesting that MIR630 in the NANOG 3’UTR may have multiple binding sites and act together to maximally repress NANOG expression. Interestingly, MIR630 mimics significantly downregulated NANOG gene transcription. Exogenous expression of OCT4, SOX2, and NANOG lacking the 3’UTR almost completely rescued the reduced transcriptional activity of MIR630. MIR630 mediated the expression of differentiation markers in NT2/D1 cells, suggesting that MIR630 leads to the differentiation of NT2/D1 cell. Our findings show that MIR630 represses NANOG through transcriptional and post-transcriptional regulation, suggesting a direct link between core pluripotency factors and MIR630.


2021 ◽  
Vol 118 (51) ◽  
pp. e2105192118
Author(s):  
Kang-Xuan Jin ◽  
Rujuan Zuo ◽  
Konstantinos Anastassiadis ◽  
Arne Klungland ◽  
Carsten Marr ◽  
...  

N6-methyladenosine (m6A) deposition on messenger RNA (mRNA) controls embryonic stem cell (ESC) fate by regulating the mRNA stabilities of pluripotency and lineage transcription factors (TFs) [P. J. Batista et al., Cell Stem Cell 15, 707–719 (2014); Y. Wang et al., Nat. Cell Biol. 16, 191–198 (2014); and S. Geula et al., Science 347, 1002–1006 (2015)]. If the mRNAs of these two TF groups become stabilized, it remains unclear how the pluripotency or lineage commitment decision is implemented. We performed noninvasive quantification of Nanog and Oct4 TF protein levels in reporter ESCs to define cell-state dynamics at single-cell resolution. Long-term single-cell tracking shows that immediate m6A depletion by Mettl3 knock-down in serum/leukemia inhibitory factor supports both pluripotency maintenance and its departure. This is mediated by differential and opposing signaling pathways. Increased FGF5 mRNA stability activates pErk, leading to Nanog down-regulation. FGF5-mediated coactivation of pAkt reenforces Nanog expression. In formative stem cells poised toward differentiation, m6A depletion activates both pErk and pAkt, increasing the propensity for mesendodermal lineage induction. Stable m6A depletion by Mettl3 knock-out also promotes pErk activation. Higher pErk counteracts the pluripotency exit delay exhibited by stably m6A-depleted cells upon differentiation. At single-cell resolution, we illustrate that decreasing m6A abundances activates pErk and pAkt-signaling, regulating pluripotency departure.


2021 ◽  
Author(s):  
Lei Luo ◽  
Yan Shi ◽  
Huanan Wang ◽  
Zizengchen Wang ◽  
Yanna Dang ◽  
...  

The emergence of the first three lineages during development are orchestrated by a network of transcription factors, which are best characterized in mice. However, the role and regulation of these factors are not completely conserved in other mammals, including human and cattle. Here, we establish a gene inactivation system by introducing premature codon with cytosine base editor in bovine embryos with a robust efficiency. Of interest, SOX2 is universally localized in early blastocysts but gradually restricted into the inner cell mass in cattle. SOX2 knockout results in a failure of the establishment of pluripotency. Indeed, OCT4 level is significantly reduced and NANOG was barely detectable. Furthermore, the formation of primitive endoderm is compromised with few SOX17 positive cells. Single embryo RNA-seq reveals a dysregulation of 2074 genes, among which 90% are up-regulated in SOX2-null blastocysts. Intriguingly, more than a dozen lineage-specific genes, including OCT4 and NANOG, are down-regulated. Moreover, SOX2 expression is sustained in the trophectoderm in absence of CDX2 in bovine late blastocysts. Overall, we propose that SOX2 is dispensable for OCT4 and NANOG expression and disappearance of SOX2 in the trophectoderm depends on CDX2 in cattle, which are all in sharp contrast with results in mice.


Biology Open ◽  
2021 ◽  
Author(s):  
Yao Xiao ◽  
Froylan Sosa ◽  
Pablo J. Ross ◽  
Kenneth E. Diffenderfer ◽  
Peter J. Hansen

Bovine embryonic stem cells (ESC) have features associated with the primed pluripotent state including low expression of one of the core pluripotency transcription factors NANOG. It has been reported that NANOG expression can be upregulated in porcine ESC by treatment with activin A and the WNT agonist CHIR99021. Accordingly, it was tested whether expression of NANOG and another pluripotency factor SOX2 could be stimulated by activin A and the WNT agonist CHIR99021. Immunoreactive NANOG and SOX2 were analyzed for bovine ESC lines derived under conditions in which activin A and CHIR99021 were added singly or in combination. Activin A enhanced NANOG expression but also reduced SOX2 expression. CHIR99021 depressed expression of both NANOG and SOX2. In a second experiment, activin A enhanced blastocyst development while CHIR99021 treatment impaired blastocyst formation and reduced number of blastomeres. Activin A treatment decreased blastomeres in the blastocyst that were positive for either NANOG or SOX2 but increased those that were CDX2+ and that were GATA6+ outside the inner cell mass. CHIR99021 reduced SOX2+ and NANOG+ blastomeres without affecting the number or percent of blastomeres that were CDX2+ and GATA6+. Results indicate activation of activin A signaling stimulates NANOG expression during self-renewal of bovine ESC but suppresses cells expressing pluripotency markers in the blastocyst and increases cells expressing CDX2. Actions of activin A to promote blastocyst development may involve its role in promoting trophectoderm formation. Furthermore, results demonstrate the negative role of canonical WNT signaling in cattle for pluripotency marker expression in ESC and in formation of inner cell mass and epiblast during embryonic development.


2021 ◽  
Vol 22 (19) ◽  
pp. 10620
Author(s):  
Ana Virginia Sánchez-Sánchez ◽  
Antonio García-España ◽  
Pilar Sánchez-Gómez ◽  
Jaime Font-de-Mora ◽  
Marián Merino ◽  
...  

NANOG is a key transcription factor required for maintaining pluripotency of embryonic stem cells. Elevated NANOG expression levels have been reported in many types of human cancers, including lung, oral, prostate, stomach, breast, and brain. Several studies reported the correlation between NANOG expression and tumor metastasis, revealing itself as a powerful biomarker of poor prognosis. However, how NANOG regulates tumor progression is still not known. We previously showed in medaka fish that Nanog regulates primordial germ cell migration through Cxcr4b, a chemokine receptor known for its ability to promote migration and metastasis in human cancers. Therefore, we investigated the role of human NANOG in CXCR4-mediated cancer cell migration. Of note, we found that NANOG regulatory elements in the CXCR4 promoter are functionally conserved in medaka fish and humans, suggesting an evolutionary conserved regulatory axis. Moreover, CXCR4 expression requires NANOG in human glioblastoma cells. In addition, transwell assays demonstrated that NANOG regulates cancer cell migration through the SDF1/CXCR4 pathway. Altogether, our results uncover NANOG-CXCR4 as a novel pathway controlling cellular migration and support Nanog as a potential therapeutic target in the treatment of Nanog-dependent tumor progression.


2021 ◽  
Author(s):  
Eishou Matsuda ◽  
Miki Nishio ◽  
Takuya Matsuura ◽  
Shunya Hibi ◽  
Shiomi Ohta ◽  
...  

Mammalian DNA methylation is an epigenetic modification which is involved in various biological processes, including gene expression regulation. In mice, methyltransferases are responsible for DNA methylation, which are critical for early embryogenesis. However, the significance of methyl-CpG binding proteins (MBPs) that bind methylated CpG remains largely unknown. We previously demonstrated that ZBTB38/CIBZ-a zinc finger type of MBP-is required for ES cell proliferation by positively regulating Nanog expression. However, the physiological function of ZBTB38 remains unclear. In this study, we generated conditional ZBTB38 knockout mice using Cre-loxP technology. Unexpectedly, our results showed that germline loss of the ZBTB38 single allele resulted in decreased epiblast cell proliferation and increased apoptosis shortly after implantation, leading to early embryonic lethality. We found that heterozygous loss of ZBTB38 reduced the expression of Nanog, Sox2, and the genes responsible for epiblast proliferation, differentiation, and cell viability. Despite this lethal phenotype, ZBTB38 is dispensable for ES cell establishment and identity. Together, these findings indicate that ZBTB38 is essential for early embryonic development, providing new insights into the roles of MBP in implantation.


2021 ◽  
Author(s):  
Agnes Dubois ◽  
Loris Vincenti ◽  
Sandrine Vandormael-Pournin ◽  
Michel Cohen-Tannoudji ◽  
Pablo Navarro

Mouse Embryonic Stem (ES) cells have an inherent propensity to explore distinct gene-regulatory states associated with either self-renewal or differentiation. This property is largely dependent on ERK activity, which promotes silencing of pluripotency genes, most notably of the transcription factor Nanog. Here, we aimed at identifying repressive histone modifications that would mark the Nanog locus for inactivation in response to ERK activity. We found histone H3 lysine 9 tri-methylation (H3K9me3) focally enriched between the Nanog promoter and its -5kb enhancer. While in undifferentiated ES cells H3K9me3 at Nanog depends on ERK activity, in somatic cells it becomes ERK-independent. Moreover, upon deletion of the region harbouring H3K9me3, ES cells display reduced heterogeneity of NANOG expression, delayed commitment into differentiation and impaired ability to acquire a primitive endoderm fate. We suggest that establishment of irreversible H3K9me3 at specific master regulators allows the acquisition of particular cell fates during differentiation.


Sign in / Sign up

Export Citation Format

Share Document