scholarly journals Machine Learning for Pattern Detection in Cochlear Implant FDA Adverse Event Reports

Author(s):  
Matthew G. Crowson ◽  
Amr Hamour ◽  
Vincent Lin ◽  
Joseph M. Chen ◽  
Timothy C. Y. Chan

ABSTRACTImportanceThe United States Food & Drug Administration (FDA) passively monitors medical device performance and safety through submitted medical device reports (MDRs) in the Manufacturer and User Facility Device Experience (MAUDE) database. These databases can be analyzed for patterns and novel opportunities for improving patient safety and/or device design.ObjectivesThe objective of this analysis was to use supervised machine learning to explore patterns in reported adverse events involving cochlear implants.DesignThe MDRs for the top three CI manufacturers by volume from January 1st 2009 to August 30th 2019 were retained for the analysis. Natural language processing was used to measure the importance of specific words. Four supervised machine learning algorithms were used to predict which adverse event narrative description pattern corresponded with a specific cochlear implant manufacturer and adverse event type - injury, malfunction, or death.SettingU.S. government public database.ParticipantsAdult and pediatric cochlear patients.ExposureSurgical placement of a cochlear implant.Main Outcome MeasureMachine learning model classification prediction accuracy (% correct predictions).Results27,511 adverse events related to cochlear implant devices were submitted to the MAUDE database during the study period. Most adverse events involved patient injury (n = 16,736), followed by device malfunction (n = 10,760), and death (n = 16). Submissions to the database were dominated by Cochlear Corporation (n = 13,897), followed by MedEL (n = 7,125), and Advanced Bionics (n = 6,489). The random forest, linear SVC, naïve Bayes and logistic algorithms were able to predict the specific CI manufacturer based on the adverse event narrative with an average accuracy of 74.8%, 86.0%, 88.5% and 88.6%, respectively.Conclusions & RelevanceUsing supervised machine learning algorithms, our classification models were able to predict the CI manufacturer and event type with high accuracy based on patterns in adverse event text descriptions.Level of evidence3

2021 ◽  
Vol 1916 (1) ◽  
pp. 012042
Author(s):  
Ranjani Dhanapal ◽  
A AjanRaj ◽  
S Balavinayagapragathish ◽  
J Balaji

2021 ◽  
Vol 11 (15) ◽  
pp. 6728
Author(s):  
Muhammad Asfand Hafeez ◽  
Muhammad Rashid ◽  
Hassan Tariq ◽  
Zain Ul Abideen ◽  
Saud S. Alotaibi ◽  
...  

Classification and regression are the major applications of machine learning algorithms which are widely used to solve problems in numerous domains of engineering and computer science. Different classifiers based on the optimization of the decision tree have been proposed, however, it is still evolving over time. This paper presents a novel and robust classifier based on a decision tree and tabu search algorithms, respectively. In the aim of improving performance, our proposed algorithm constructs multiple decision trees while employing a tabu search algorithm to consistently monitor the leaf and decision nodes in the corresponding decision trees. Additionally, the used tabu search algorithm is responsible to balance the entropy of the corresponding decision trees. For training the model, we used the clinical data of COVID-19 patients to predict whether a patient is suffering. The experimental results were obtained using our proposed classifier based on the built-in sci-kit learn library in Python. The extensive analysis for the performance comparison was presented using Big O and statistical analysis for conventional supervised machine learning algorithms. Moreover, the performance comparison to optimized state-of-the-art classifiers is also presented. The achieved accuracy of 98%, the required execution time of 55.6 ms and the area under receiver operating characteristic (AUROC) for proposed method of 0.95 reveals that the proposed classifier algorithm is convenient for large datasets.


Author(s):  
Charalambos Kyriakou ◽  
Symeon E. Christodoulou ◽  
Loukas Dimitriou

The paper presents a data-driven framework and related field studies on the use of supervised machine learning and smartphone technology for the spatial condition-assessment mapping of roadway pavement surface anomalies. The study explores the use of data, collected by sensors from a smartphone and a vehicle’s onboard diagnostic device while the vehicle is in movement, for the detection of roadway anomalies. The research proposes a low-cost and automated method to obtain up-to-date information on roadway pavement surface anomalies with the use of smartphone technology, artificial neural networks, robust regression analysis, and supervised machine learning algorithms for multiclass problems. The technology for the suggested system is readily available and accurate and can be utilized in pavement monitoring systems and geographical information system applications. Further, the proposed methodology has been field-tested, exhibiting accuracy levels higher than 90%, and it is currently expanded to include larger datasets and a bigger number of common roadway pavement surface defect types. The proposed system is of practical importance since it provides continuous information on roadway pavement surface conditions, which can be valuable for pavement engineers and public safety.


Sign in / Sign up

Export Citation Format

Share Document