scholarly journals Computational Analysis of Dynamic Allostery and Control in the SARS-CoV-2 Main Protease

Author(s):  
Igors Dubanevics ◽  
Tom C.B. McLeish

AbstractThe COVID-19 pandemic caused by the novel coronavirus SARS-CoV-2 has generated a global pandemic and no vaccine or antiviral drugs exist at the moment of writing. An attractive coronavirus drug target is the main protease (Mpro, also known as 3CLpro) because of its vital role in the viral cycle. A significant body of work has been focused on finding inhibitors which bind and block the active site of the main protease, but little has been done to address potential non-competitive inhibition which targets regions beyond the active site, partly because the fundamental biophysics of such allosteric control is still poorly understood. In this work, we construct an Elastic Network Model (ENM) of the SARS-CoV-2 Mpro homodimer protein and analyse the dynamics and thermodynamics of the main protease’s ENM. We found a rich and heterogeneous dynamical structure in the correlated motions, including allosterically correlated motions between the homodimeric protease’s active sites. Exhaustive 1-point and 2-point mutation scans of the ENM and their effect on fluctuation free energies confirm previously experimentally identified bioactive residues, but also suggest several new candidate regions that are distant from the active site for control of the protease function. Our results suggest new dynamically-driven control regions as possible candidates for non-competitive inhibiting binding sites in the protease, which may assist the development of current fragmentbased binding screens. The results also provide new insight into the protein physics of fluctuation allostery and its underpinning dynamical structure.

2021 ◽  
Vol 18 (174) ◽  
pp. 20200591
Author(s):  
Igors Dubanevics ◽  
Tom C. B. McLeish

The COVID-19 pandemic caused by the novel coronavirus SARS-CoV-2 has no publicly available vaccine or antiviral drugs at the time of writing. An attractive coronavirus drug target is the main protease (M pro , also known as 3CL pro ) because of its vital role in the viral cycle. A significant body of work has been focused on finding inhibitors which bind and block the active site of the main protease, but little has been done to address potential non-competitive inhibition, targeting regions other than the active site, partly because the fundamental biophysics of such allosteric control is still poorly understood. In this work, we construct an elastic network model (ENM) of the SARS-CoV-2 M pro homodimer protein and analyse its dynamics and thermodynamics. We found a rich and heterogeneous dynamical structure, including allosterically correlated motions between the homodimeric protease's active sites. Exhaustive 1-point and 2-point mutation scans of the ENM and their effect on fluctuation free energies confirm previously experimentally identified bioactive residues, but also suggest several new candidate regions that are distant from the active site, yet control the protease function. Our results suggest new dynamically driven control regions as possible candidates for non-competitive inhibiting binding sites in the protease, which may assist the development of current fragment-based binding screens. The results also provide new insights into the active biophysical research field of protein fluctuation allostery and its underpinning dynamical structure.


2020 ◽  
Author(s):  
Igors Dubanevics ◽  
Charles Heaton ◽  
Carlos Riechmann ◽  
Tom C.B. McLeish

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which caused the COVID-19 pandemic, has no vaccine or antiviral drugs available to the public, at the time of writing. The virus’ non-structural proteins are promising drug targets because of their vital role in the viral cycle. A significant body of work has been focused on finding inhibitors which covalently and competitively bind the active site of the non-structural proteins, but little has been done to address regions other than the active site, i.e. for non-competitive inhibition. Here we extend previous work on the SARS-CoV-2 Mpro (nsp5) to three other SARS-CoV-2 proteins: host shutoff factor (nsp1), papain-like protease (nsp3, also known as PLpro) and RNA-dependent RNA-polymerase (nsp12, also known as RdRp) in complex with nsp7 and nsp8 cofactors. Using open-source software (DDPT) to construct Elastic Network Models (ENM) of the chosen proteins we analyse their fluctuation dynamics and thermodynamics, as well as using this protein family to study convergence and robustness of the ENM. Exhaustive 2-point mutational scans of the ENM and their effect on fluctuation free energies suggest several new candidate regions, distant from the active site, for control of the proteins’ function, which may assist the drug development based on the current small molecule binding screens. The results also provide new insights, including non-additive effects of double-mutation or inhibition, into the active biophysical research field of protein fluctuation allostery and its underpinning dynamical structure.


Author(s):  
Kowsar Bagherzadeh ◽  
Kourosh Daneshvarnejad ◽  
Mohammad Abbasinazari ◽  
homa azizian

Aims: In late December 2019, early reports predicted the onset of a potential Coronavirus outbreak in china, given the estimate of a reproduction number for the 2019 Novel Coronavirus (COVID-19). Because of high ability of transmission and widespread prevalence, the mortality of COVID-19 infection is growing fast worldwide. Absent of an anti-COVID-19 has put scientists on the urge to repurpose already approved therapeutics or to find new active compounds against coronavirus. Here in this study, a set of computational approaches were performed in order to repurpose antivirals for dual inhibition of the frontier proteases involved in virus replication, papain-like protease (PLpro; corresponding to nsp3) and a main protease (Mpro), 3C‑like protease (3CLpro; corresponding to nsp5). Materials and Methods: In this regard, a rational virtual screening procedure including exhaustive docking techniques was performed for a database of 160 antiviral agents over 3CLpro and PLpro active sites of SARS-CoV-2. The compounds binding energies and interaction modes over 3CLpro and PLpro active sites were analyzed and ranked with the aid of free Gibbs binding energy. The most potent compounds, based on our filtering process, are then proposed as dual inhibitors of SARSC-CoV-2 proteases. Key findings: Accordingly, seven antiviral agents including two FDA approved (Nelfinavir, Valaganciclovir) and five investigational compounds (Merimepodib, Inarigivir, Remdesivir, Taribavirine and TAS106-106) are proposed as potential dual inhibitors of the enzymes necessary for RNA replication in which Remdesivir as well as Inagrivir have the highest binding affinity for both of the active sites. Significance: The mentioned drug proposed to inhibit both PLpro and 3CLpro enzymes with the aim of finding dual inhibitors of SARSC-CoV-2 proteases.


Author(s):  
Yogesh Kumar ◽  
Harvijay Singh

<div>The rapidly enlarging COVID-19 pandemic caused by novel SARS-coronavirus 2 is a global</div><div>public health emergency of unprecedented level. Therefore the need of a drug or vaccine that</div><div>counter SARS-CoV-2 is an utmost requirement at this time. Upon infection the ssRNA genome</div><div>of SARS-CoV-2 is translated into large polyprotein which further processed into different</div><div>nonstructural proteins to form viral replication complex by virtue of virus specific proteases:</div><div>main protease (3-CL protease) and papain protease. This indispensable function of main protease</div><div>in virus replication makes this enzyme a promising target for the development of inhibitors and</div><div>potential treatment therapy for novel coronavirus infection. The recently concluded α-ketoamide</div><div>ligand bound X-ray crystal structure of SARS-CoV-2 Mpro (PDB ID: 6Y2F) from Zhang et al.</div><div>has revealed the potential inhibitor binding mechanism and the determinants responsible for</div><div>involved molecular interactions. Here, we have carried out a virtual screening and molecular</div><div>docking study of FDA approved drugs primarily targeted for other viral infections, to investigate</div><div>their binding affinity in Mpro active site. Virtual screening has identified a number of antiviral</div><div>drugs, top ten of which on the basis of their bending energy score are further examined through </div><div>molecular docking with Mpro. Docking studies revealed that drug Lopinavir-Ritonavir, Tipranavir</div><div>and Raltegravir among others binds in the active site of the protease with similar or higher</div><div>affinity than the crystal bound inhibitor α-ketoamide. However, the in-vitro efficacies of the drug</div><div>molecules tested in this study, further needs to be corroborated by carrying out biochemical and</div><div>structural investigation. Moreover, this study advances the potential use of existing drugs to be</div><div>investigated and used to contain the rapidly expanding SARS-CoV-2 infection.</div>


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Alireza Mansouri ◽  
Rasoul Kowsar ◽  
Mostafa Zakariazadeh ◽  
Hassan Hakimi ◽  
Akio Miyamoto

AbstractThe novel coronavirus disease (COVID-19) is currently a big concern around the world. Recent reports show that the disease severity and mortality of COVID-19 infected patients may vary from gender to gender with a very high risk of death for seniors. In addition, some steroid structures have been reported to affect coronavirus, SARS-CoV-2, function and activity. The entry of SARS-CoV-2 into host cells depends on the binding of coronavirus spike protein to angiotensin converting enzyme-2 (ACE2). Viral main protease is essential for the replication of SARS-CoV-2. It was hypothesized that steroid molecules (e.g., estradiol, progesterone, testosterone, dexamethasone, hydrocortisone, prednisone and calcitriol) could occupy the active site of the protease and could alter the interaction of spike protein with ACE2. Computational data showed that estradiol interacted more strongly with the main protease active site. In the presence of calcitriol, the binding energy of the spike protein to ACE2 was increased, and transferring Apo to Locked S conformer of spike trimer was facilitated. Together, the interaction between spike protein and ACE2 can be disrupted by calcitriol. Potential use of estradiol and calcitriol to reduce virus invasion and replication needs clinical investigation.


Author(s):  
Shoab Saadat ◽  
Salman Mansoor ◽  
Naveen Naqvi ◽  
Ammad Fahim ◽  
Zaira Rehman ◽  
...  

Abstract BackgroundThe current Novel Coronavirus (SARS-CoV-2) pandemic is the third major outbreak of the 21st century which emerged in December 2019 from Wuhan, China. At present there are no known treatments or vaccines to cure or prevent the illness.ObjectiveThe objective of this study was to explore a list of potential drugs (herbal and antivirals) for their role in inhibiting activity and or replication of SARS-CoV-2 by using molecular docking onto the crystal structures of key viral proteins.MethodologyIn this study, we used molecular docking to estimate the binding affinities of 3699 drugs on the potential active sites of the 6 main SARS-CoV-2 proteins (Papain like protease, Main protease, ADP Ribose phosphatase, Spike protein, NSP-9 and NSP-10 to 16 complex). While other studies have mostly been performed on the homology models, we obtained the most recently submitted crystal structures of all 6 proteins from the protein data bank for this analysis.ResultsOur results showed the top ligands as Theasinensin A, Epigallocatechin, Theaflavin, Theasinensin A, Epigallocatechin and Favipiravir showing the highest binding affinities against papain-like protease, ADP ribose phosphatase, main protease, spike protein, RNA replicase (NSP-9) and methyl-transferase (NSP-16) respectively.ConclusionWe show that the compounds from our list with the greatest inhibitory potential against SARS-CoV-2 activity or replication include Theasinensin A, Epigallocatechin-3-gallate, Theaflavin, Favipiravir, Curucumin, Quercetin, Mitoxantrone, Amentoflavone, Colistin, Cimicifugic acid, Theaflavin, Silymarin and Chebulagic. We recommend further wet-lab and clinical testing of these compounds to further explore their role against SARS-CoV-2.


Author(s):  
Yogesh Kumar ◽  
Harvijay Singh

<div>The rapidly enlarging COVID-19 pandemic caused by novel SARS-coronavirus 2 is a global</div><div>public health emergency of unprecedented level. Therefore the need of a drug or vaccine that</div><div>counter SARS-CoV-2 is an utmost requirement at this time. Upon infection the ssRNA genome</div><div>of SARS-CoV-2 is translated into large polyprotein which further processed into different</div><div>nonstructural proteins to form viral replication complex by virtue of virus specific proteases:</div><div>main protease (3-CL protease) and papain protease. This indispensable function of main protease</div><div>in virus replication makes this enzyme a promising target for the development of inhibitors and</div><div>potential treatment therapy for novel coronavirus infection. The recently concluded α-ketoamide</div><div>ligand bound X-ray crystal structure of SARS-CoV-2 Mpro (PDB ID: 6Y2F) from Zhang et al.</div><div>has revealed the potential inhibitor binding mechanism and the determinants responsible for</div><div>involved molecular interactions. Here, we have carried out a virtual screening and molecular</div><div>docking study of FDA approved drugs primarily targeted for other viral infections, to investigate</div><div>their binding affinity in Mpro active site. Virtual screening has identified a number of antiviral</div><div>drugs, top ten of which on the basis of their bending energy score are further examined through </div><div>molecular docking with Mpro. Docking studies revealed that drug Lopinavir-Ritonavir, Tipranavir</div><div>and Raltegravir among others binds in the active site of the protease with similar or higher</div><div>affinity than the crystal bound inhibitor α-ketoamide. However, the in-vitro efficacies of the drug</div><div>molecules tested in this study, further needs to be corroborated by carrying out biochemical and</div><div>structural investigation. Moreover, this study advances the potential use of existing drugs to be</div><div>investigated and used to contain the rapidly expanding SARS-CoV-2 infection.</div>


Author(s):  
Navaneethakrishnan Krishnamoorthy

The novel coronavirus SARS-CoV2 (CoV2) emerged in December 2019. This virus has 88% genomic similarity with SARS-CoV (CoV), and both viruses largely depend on their main protease (Mpro) to regulate infection. Mpro thus represents an attractive target for anti-SARS drug design. The CoV and CoV2 Mpro are 97% identical at the sequence level, with 12 variable residues, and their X-ray structures appear similar. We thus structurally analysed how these variable residues affect the intra-molecular interactions between key residues in the CoV2 Mpro active-site. Compared to CoV Mpro, the 12 divergent residues in CoV2 Mpro exhibit modified intra-molecular interaction networks that ultimately restructure the molecular micro-environment. These altered networks also indirectly affect the networks of other active-site residues at the entrance (T26, M49 and Q192) and near the catalytic region (F140, H163, H164, M165 and H172) of the Mpro. This suggest CoV2 indirectly (via neighbours) reshape key molecular networks around the Mpro active-site. It seems that the CoV2 Mpro deceives us with its apparent structurally identical to the CoV Mpro while this viral system accumulates mass mutations (12 variable residues) at key positions. Some of these identified CoV2 Mpro networks at the active-site might guide design of efficient CoV2 Mpro inhibitors.


2020 ◽  
Author(s):  
Sourav Pal ◽  
Dr. Arindam Talukdar

<p>The recent pandemic due to the novel coronavirus SARS-CoV-2 (COVID-19) is causing significant mortality worldwide. However, there is a lack of specific drugs which can either prevent or treat the patient suffering from COVID-19. To understand the SARS-CoV-2 receptor recognition causing infectivity and pathogenesis, we have compiled a list of 20 probable drug targets on host and virus based on viral life cycle along with their PDB IDs for the rational development of future antivirals. We have prepared nine homology model for vital proteins for which no crystal structure is reported, which includes protein from host, viral membrane proteins and essential non-structural proteins (NSPs) of virus. The generated models were validated followed by Ramachandran plot along with their sequence and structural alignment. The active site residues of all the protein models are calculated by utilizing COACH meta-server and also cross verified with the CASTp webservers. All the active sites of the homology build proteins were evaluated after superimposition of the closely related X-ray crystallized structure bound with the co-crystal ligands. These information present in the manuscript can be used for the discovery effort towards new antivirals as well as repurposing FDA approved drugs against SARS-CoV-2.</p><br>


2021 ◽  
Vol 50 (5) ◽  
pp. 1473-1483
Author(s):  
Fawad Ahmad ◽  
Saima Ikram ◽  
Jamshaid Ahmad ◽  
Irshad ur Rehman ◽  
Saeed Ullah Khattak ◽  
...  

The recent emergence of a novel coronavirus strain (SARS-CoV-2) has stimulated global efforts to identify potential drugs that target proteins expressed by this novel coronavirus. Among these, the main protease of SARS-CoV-2 (3CL-protease (3CLPro), also known as (MPro) is one of the best choices for the scientists to target. 3CLPro is involved in the processing of polyproteins into mature non-structural viral proteins. An X-ray crystallographic structure (PDB ID 6LU7) of this protein was obtained from the PDB database. ChemDiv libraries of ~80,000 antiviral and ~13,000 coronavirus-targeting molecules were screened against the 3D structure of 3CLPro of SARS-CoV-2. We have identified a panel of molecules that showed an activity and potentially block the active site of the SARS-CoV-2 main protease. These molecules can be investigated further to develop effective virus-inhibiting molecules to treat this highly distressing disease, causing extreme unrest across the globe.


Sign in / Sign up

Export Citation Format

Share Document