scholarly journals The timing and impact of psychiatric, cognitive and motor abnormalities in Huntington's disease

Author(s):  
Branduff McAllister ◽  
James F. Gusella ◽  
G. Bernhard Landwehrmeyer ◽  
Jong-Min Lee ◽  
Marcy E. MacDonald ◽  
...  

Objective: To assess the prevalence, timing and functional impact of psychiatric, cognitive and motor abnormalities in Huntington's disease (HD), we analysed retrospective clinical data from individuals with manifest HD. Methods: Clinical features of HD patients were analysed for 6316 individuals in the European REGISTRY study from 161 sites across 17 countries. Data came from clinical history and the Clinical Characteristics Questionnaire that assessed eight symptoms: motor, cognitive, apathy, depression, perseverative/obsessive behavior, irritability, violent/aggressive behavior, and psychosis. Multiple logistic regression was used to analyse relationships between symptoms and functional outcomes. Results: The initial manifestation of HD is increasingly likely to be motor, and less likely to be psychiatric, as age at presentation increases. The nature of the first manifestation is not associated with pathogenic CAG repeat length. Symptom prevalence data from the patient-completed Clinical Characteristics Questionnaire correlate specifically with validated clinical measures. Using these data, we show that psychiatric and cognitive symptoms are common in HD, with earlier onsets associated with longer CAG repeats. 42.4% of HD patients reported at least one psychiatric or cognitive symptom before motor symptoms, with depression most common. Apathy and cognitive impairment tend to come later in the disease course. Each psychiatric or cognitive symptom was associated with significantly reduced total functional capacity scores. Conclusions: Psychiatric and cognitive symptoms occur before motor symptoms in many more HD patients than previously reported. They have a greater negative impact on daily life than involuntary movements and should be specifically targeted with clinical outcome measures and treatments.

Neurology ◽  
2021 ◽  
pp. 10.1212/WNL.0000000000011893
Author(s):  
Branduff McAllister ◽  
James F Gusella ◽  
G. Bernhard Landwehrmeyer ◽  
Jong-Min Lee ◽  
Marcy E MacDonald ◽  
...  

ObjectiveTo assess the prevalence, timing and functional impact of psychiatric, cognitive and motor abnormalities in Huntington’s disease (HD) gene carriers, we analysed retrospective clinical data from individuals with manifest HD.MethodsClinical features of HD patients were analysed for 6316 individuals in the European REGISTRY study from 161 sites across 17 countries. Data came from clinical history and the patient-completed Clinical Characteristics Questionnaire that assessed eight symptoms: motor, cognitive, apathy, depression, perseverative/obsessive behavior, irritability, violent/aggressive behavior, and psychosis. Multiple logistic regression was used to analyse relationships between symptoms and functional outcomes.ResultsThe initial manifestation of HD is increasingly likely to be motor, and less likely to be psychiatric, as age at presentation increases, and is independent of pathogenic CAG repeat length. The Clinical Characteristics Questionnaire captures data on non-motor symptom prevalence that correlate specifically with validated clinical measures. Psychiatric and cognitive symptoms are common in HD gene carriers, with earlier onsets associated with longer CAG repeats. 42.4% of HD patients reported at least one psychiatric or cognitive symptom before motor symptoms, with depression most common. Each non-motor symptom was associated with significantly reduced total functional capacity scores.ConclusionsPsychiatric and cognitive symptoms are common and functionally debilitating in HD gene carriers. They require recognition and targeting with clinical outcome measures and treatments. However, as it is impossible to distinguish confidently between non-motor symptoms arising from HD and primary psychiatric disorders, particularly in younger pre-manifest patients, non-motor symptoms should not be used to make a clinical diagnosis of HD.


2021 ◽  
Vol 12 ◽  
Author(s):  
Annika Heinz ◽  
Judith Schilling ◽  
Willeke van Roon-Mom ◽  
Sybille Krauß

Huntington’s disease (HD) is caused by an expansion mutation of a CAG repeat in exon 1 of the huntingtin (HTT) gene, that encodes an expanded polyglutamine tract in the HTT protein. HD is characterized by progressive psychiatric and cognitive symptoms associated with a progressive movement disorder. HTT is ubiquitously expressed, but the pathological changes caused by the mutation are most prominent in the central nervous system. Since the mutation was discovered, research has mainly focused on the mutant HTT protein. But what if the polyglutamine protein is not the only cause of the neurotoxicity? Recent studies show that the mutant RNA transcript is also involved in cellular dysfunction. Here we discuss the abnormal interaction of the mutant HTT transcript with a protein complex containing the MID1 protein. MID1 aberrantly binds to CAG repeats and this binding increases with CAG repeat length. Since MID1 is a translation regulator, association of the MID1 complex stimulates translation of mutant HTT mRNA, resulting in an overproduction of polyglutamine protein. Thus, blocking the interaction between MID1 and mutant HTT mRNA is a promising therapeutic approach. Additionally, we show that MID1 expression in the brain of both HD patients and HD mice is aberrantly increased. This finding further supports the concept of blocking the interaction between MID1 and mutant HTT mRNA to counteract mutant HTT translation as a valuable therapeutic strategy. In line, recent studies in which either compounds affecting the assembly of the MID1 complex or molecules targeting HTT RNA, show promising results.


2012 ◽  
Vol 2012 ◽  
pp. 1-19 ◽  
Author(s):  
Tianle Chen ◽  
Yuanjia Wang ◽  
Yanyuan Ma ◽  
Karen Marder ◽  
Douglas R. Langbehn

Huntington's disease (HD) is a progressive neurodegenerative disorder caused by an expansion of CAG repeats in the IT15 gene. The age-at-onset (AAO) of HD is inversely related to the CAG repeat length and the minimum length thought to cause HD is 36. Accurate estimation of the AAO distribution based on CAG repeat length is important for genetic counseling and the design of clinical trials. In the Cooperative Huntington's Observational Research Trial (COHORT) study, the CAG repeat length is known for the proband participants. However, whether a family member shares the huntingtin gene status (CAG expanded or not) with the proband is unknown. In this work, we use the expectation-maximization (EM) algorithm to handle the missing huntingtin gene information in first-degree family members in COHORT, assuming that a family member has the same CAG length as the proband if the family member carries a huntingtin gene mutation. We perform simulation studies to examine performance of the proposed method and apply the methods to analyze COHORT proband and family combined data. Our analyses reveal that the estimated cumulative risk of HD symptom onset obtained from the combined data is slightly lower than the risk estimated from the proband data alone.


2019 ◽  
Vol 9 (10) ◽  
pp. 245
Author(s):  
Sipilä JOT

Huntington’s disease is caused by at least 36 cytosine-adenine-guanine (CAG) repeats in an HTT gene allele, but repeat tracts in the intermediate range (27–35 repeats) also display a subtle phenotype. This patient had a slightly elongated CAG repeat tract (29 repeats), a prominent family history of Parkinson’s disease (PD), and a clinical phenotype mostly consistent with PD, but early dystonia and poor levodopa response. Neurophysiological test results were more consistent with Huntington’s disease (HD) than PD. It is suggested that the intermediate allele modulated the clinical phenotype of PD in this patient.


2021 ◽  
pp. 1-6
Author(s):  
Matthew Salter ◽  
Ryan Powell ◽  
Jennifer Back ◽  
Francis Grand ◽  
Christina Koutsothanasi ◽  
...  

Huntington’s Disease (HD) is a progressive neurodegenerative condition that causes degeneration of neurons in the brain, ultimately leading to death. The root cause of HD is an expanded trinucleotide Cytosine-Adenine-Guanine (CAG) repeat in the “huntingtin gene” (HTT). While there is a rough correlation between the number of CAG repeats and disease onset, the development of clinical symptoms can vary by decades within individuals and little is known about this presymptomatic phase. Using peripheral blood samples from HD patients and healthy controls we used EpiSwitch®, a validated high-resolution industrial platform for the detection of chromosome conformations, to assess chromatin architecture in the immediate vicinity of the HTT gene. We evaluated chromatin conformations at 20 sites across 225 kb of the HTT locus in a small cohort of healthy controls, verified symptomatic HD patients (CAG, n>39) and patients with CAG expansions who had not yet manifested clinical symptoms of HD. Discrete chromosome conformations were observed across the patient groups. We found two constitutive interactions (occurring in all patient groups) and seven conditional interactions which were present in HD, but not in healthy controls. Most important, we observed three conditional interactions that were present only in HD patients manifesting clinical symptoms (symptomatic cases), but not in presymptomatic cases. 85% (6 out of 7) of the patients in the symptomatic HD cohort demonstrated at least one of the specific chromosome conformations associated with symptomatic HD. Our results provide the first evidence that chromatin architecture at the HTT locus is systemically altered in patients with HD, with conditional differences between clinical stages. Given the high clinical need in having a molecular tool to assess disease progression in HD, these results strongly suggest that the non-invasive assessment of Chromosome Conformation Signatures (CCS) warrant further study as a prognostic tool in HD.


F1000Research ◽  
2019 ◽  
Vol 7 ◽  
pp. 1757
Author(s):  
Matthew Salter ◽  
Ryan Powell ◽  
Jennifer Back ◽  
Francis Grand ◽  
Christina Koutsothanasi ◽  
...  

Background:Huntington’s disease (HD) is a progressive neurodegenerative condition that causes degeneration of neurons in the brain, ultimately leading to death. The root cause of HD is an expanded trinucleotide cytosine-adenine-guanine (CAG) repeat in the “huntingtin gene” (HTT). While there is a rough correlation between the number of CAG repeats and disease onset, the development of clinical symptoms can vary by decades within individuals and little is known about this pre-symptomatic phase.Methods:Using peripheral blood samples from HD patients and healthy controls we usedEpiSwitch™, a validated high-resolution industrial platform for the detection of chromosome conformations, to assess chromatin architecture in the immediate vicinity of theHTTgene. We evaluated chromatin conformations at 20 sites across 225 kb of theHTTlocus in healthy controls, verified symptomatic HD patients (CAG, n>39) and patients with CAG expansions who had not yet manifested clinical symptoms of HD.Results:Discrete chromosome conformations were observed across the patient groups. We found two constitutive interactions (occurring in all patient groups) and seven conditional interactions which were present in HD, but not in healthy controls. Most important, we observed three conditional interactions that were present only in HD patients manifesting clinical symptoms (symptomatic cases), but not in presymptomatic cases. Of the patients in the symptomatic HD cohort, 86% (6 out of 7) demonstrated at least one of the specific chromosome conformations associated with symptomatic HD.Conclusion:Our results provide the first evidence that chromatin architecture at theHTTlocus is systemically altered in patients with HD, with conditional differences between clinical stages. Given the high clinical need in having a molecular tool to assess disease progression in HD, these results strongly suggest that the non-invasive assessment of chromosome conformation signatures can be a valuable addition to prognostic assessment of HD patients.


Author(s):  
Adam Rosenblatt

Huntington’s disease (HD) is a hereditary neurodegenerative disorder characterized by the triad of a movement disorder, dementia, and various psychiatric disturbances. HD is caused by the abnormal expansion of a trinucleotide (CAG) repeat in the huntingtin gene of chromosome 4—a mutation that is inherited as an autosomal dominant. When the number of CAG repeats exceeds 39, the individual harboring it goes on to develop HD. The most common time of onset is in the fourth or fifth decade, but the age of onset is inversely correlated with the size of the triplet repeat expansion. In rare instances, persons with very large expansions may have onset in childhood, and those with expansions only just into the abnormal range may have onset late in life. Children of affected fathers, if they receive the abnormal allele, tend to inherit an allele that is even further expanded, and thus usually experience the onset of symptoms at a younger age than their fathers; this phenomenon is known as paternal anticipation. The progression of HD is inexorable and usually leads to death within 15 to 20 years of symptom onset; patients in the final stages have severe dementia and are unable to speak, eat, or purposefully move. Death typically results from the consequences of immobility such as pneumonia or malnutrition. The movement disorder of HD has two major manifestations: involuntary movements (eg, chorea, dystonia) and impairments of voluntary movement (eg, clumsiness, dysarthria, swallowing difficulties, falls, bradykinesia, rigidity). Chorea generally predominates early in the course and is gradually eclipsed by motor impairment as the disease becomes more advanced. In the end stages, patients are rigid and immobile. A variety of medications are used to suppress chorea in HD, including neuroleptics, benzodiazepines, and dopamine-depleting agents such as tetrabenazine, but it remains controversial whether these agents convey functional, as opposed to cosmetic, benefits. HD, like many other neurodegenerative disorders, is associated with a variety of psychiatric problems. Some of these problems such as insomnia or demoralization may be thought of as nonspecific. They have a variety of causes and are associated with many different medical conditions.


2001 ◽  
Vol 31 (1) ◽  
pp. 3-14 ◽  
Author(s):  
L. W. HO ◽  
J. CARMICHAEL ◽  
J. SWARTZ ◽  
A. WYTTENBACH ◽  
J. RANKIN ◽  
...  

Background. Huntington's disease (HD) is a fatal neurodegenerative disorder with an autosomal dominant mode of inheritance. It leads to progressive dementia, psychiatric symptoms and an incapacitating choreiform movement disorder, culminating in premature death. HD is caused by an increased CAG repeat number in a gene coding for a protein with unknown function, called huntingtin. The trinucleotide CAG codes for the amino acid glutamine and the expanded CAG repeats are translated into a series of uninterrupted glutamine residues (a polyglutamine tract).Methods. This review describes the epidemiology, clinical symptomatology, neuropathological features and genetics of HD. The main aim is to examine important findings from animal and cellular models and evaluate how they have enriched our understanding of the pathogenesis of HD and other diseases caused by expanded polyglutamine tracts.Results. Selective death of striatal and cortical neurons occurs. It is likely that the HD mutation confers a deleterious gain of function on the protein. Neuronal intranuclear inclusions containing huntingtin and ubiquitin develop in patients and transgenic mouse models of HD. Other proposed mechanisms contributing to neuropathology include excitotoxicity, oxidative stress, impaired energy metabolism, abnormal protein interactions and apoptosis.Conclusions. Although many interesting findings have accumulated from studies of HD and other polyglutamine diseases, there remain many unresolved issues pertaining to the exact roles of intranuclear inclusions and protein aggregates, the mechanisms of selective neuronal death and delayed onset of illness. Further knowledge in these areas will inspire the development of novel therapeutic strategies.


2020 ◽  
Vol 117 (8) ◽  
pp. 4411-4417 ◽  
Author(s):  
Su Yang ◽  
Huiming Yang ◽  
Luoxiu Huang ◽  
Luxiao Chen ◽  
Zhaohui Qin ◽  
...  

Identification of repeat-associated non-AUG (RAN) translation in trinucleotide (CAG) repeat diseases has led to the emerging concept that CAG repeat diseases are caused by nonpolyglutamine products. Nonetheless, the in vivo contribution of RAN translation to the pathogenesis of CAG repeat diseases remains elusive. Via CRISPR/Cas9-mediated genome editing, we established knock-in mouse models that harbor expanded CAG repeats in the mouse huntingtin gene to express RAN-translated products with or without polyglutamine peptides. We found that RAN translation is not detected in the knock-in mouse models when expanded CAG repeats are expressed at the endogenous level. Consistently, the expanded CAG repeats that cannot be translated into polyglutamine repeats do not yield the neuropathological and behavioral phenotypes that were found in knock-in mice expressing expanded polyglutamine repeats. Our findings suggest that RAN-translated products do not play a major role in the pathogenesis of CAG repeat diseases and underscore the importance in targeting polyglutamine repeats for therapeutics.


Sign in / Sign up

Export Citation Format

Share Document