scholarly journals The impact of transposable elements on tomato diversity

Author(s):  
Marisol Domínguez ◽  
Elise Dugas ◽  
Médine Benchouaia ◽  
Basile Leduque ◽  
José Jimenez-Gomez ◽  
...  

ABSTRACTTomatoes come in a multitude of shapes and flavors despite a narrow genetic pool. Here, we leveraged whole-genome resequencing data available for 602 cultivated and wild accessions to determine the contribution of transposable elements (TEs) to tomato diversity. We identified 6,906 TE insertions polymorphisms (TIPs), which result from the mobilization of 337 distinct TE families. Most TIPs are low frequency variants and disproportionately located within or adjacent to genes involved in environmental response. In addition, we show that genic TE insertions tend to have strong transcriptional effects and can notably lead to the generation of multiple transcript isoforms. We also uncovered through genome-wide association studies (GWAS) ~180 TIPs associated with extreme variations in major agronomic traits or secondary metabolites. Importantly, these TIPs tend to affect loci that are distinct from those tagged by SNPs. Collectively, our findings suggest a unique and important role for TE mobilization in tomato diversification, with important implications for future breeding.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Marisol Domínguez ◽  
Elise Dugas ◽  
Médine Benchouaia ◽  
Basile Leduque ◽  
José M Jiménez-Gómez ◽  
...  

Abstract Tomatoes come in a multitude of shapes and flavors despite a narrow genetic pool. Here, we leverage whole-genome resequencing data available for 602 cultivated and wild accessions to determine the contribution of transposable elements (TEs) to tomato diversity. We identify 6,906 TE insertions polymorphisms (TIPs), which result from the mobilization of 337 distinct TE families. Most TIPs are low frequency variants and TIPs are disproportionately located within or adjacent to genes involved in environmental responses. In addition, genic TE insertions tend to have strong transcriptional effects and they can notably lead to the generation of multiple transcript isoforms. Using genome-wide association studies (GWAS), we identify at least 40 TIPs robustly associated with extreme variation in major agronomic traits or secondary metabolites and in most cases, no SNP tags the TE insertion allele. Collectively, these findings highlight the unique role of TE mobilization in tomato diversification, with important implications for breeding.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Kaixuan Zhang ◽  
Ming He ◽  
Yu Fan ◽  
Hui Zhao ◽  
Bin Gao ◽  
...  

Abstract Background Tartary buckwheat (Fagopyrum tataricum) is a nutritionally balanced and flavonoid-rich crop plant that has been in cultivation for 4000 years and is now grown globally. Despite its nutraceutical and agricultural value, the characterization of its genetics and its domestication history is limited. Results Here, we report a comprehensive database of Tartary buckwheat genomic variation based on whole-genome resequencing of 510 germplasms. Our analysis suggests that two independent domestication events occurred in southwestern and northern China, resulting in diverse characteristics of modern Tartary buckwheat varieties. Genome-wide association studies for important agricultural traits identify several candidate genes, including FtUFGT3 and FtAP2YT1 that significantly correlate with flavonoid accumulation and grain weight, respectively. Conclusions We describe the domestication history of Tartary buckwheat and provide a detailed resource of genomic variation to allow for genomic-assisted breeding in the improvement of elite cultivars.


Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 513
Author(s):  
Grace H. Yang ◽  
Danielle A. Fontaine ◽  
Sukanya Lodh ◽  
Joseph T. Blumer ◽  
Avtar Roopra ◽  
...  

Transcription factor 19 (TCF19) is a gene associated with type 1 diabetes (T1DM) and type 2 diabetes (T2DM) in genome-wide association studies. Prior studies have demonstrated that Tcf19 knockdown impairs β-cell proliferation and increases apoptosis. However, little is known about its role in diabetes pathogenesis or the effects of TCF19 gain-of-function. The aim of this study was to examine the impact of TCF19 overexpression in INS-1 β-cells and human islets on proliferation and gene expression. With TCF19 overexpression, there was an increase in nucleotide incorporation without any change in cell cycle gene expression, alluding to an alternate process of nucleotide incorporation. Analysis of RNA-seq of TCF19 overexpressing cells revealed increased expression of several DNA damage response (DDR) genes, as well as a tightly linked set of genes involved in viral responses, immune system processes, and inflammation. This connectivity between DNA damage and inflammatory gene expression has not been well studied in the β-cell and suggests a novel role for TCF19 in regulating these pathways. Future studies determining how TCF19 may modulate these pathways can provide potential targets for improving β-cell survival.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Sally K Hammad ◽  
Min Zi ◽  
Sukhpal Prehar ◽  
Robert Little ◽  
Ludwig Neyses ◽  
...  

Introduction: Hypertension is a major risk factor for cardiac hypertrophy and heart failure. Genome wide association studies have recently identified single nucleotide polymorphisms in ATP2B1 , the gene encoding the calcium extrusion pump, plasma membrane calcium ATPase (PMCA1), as having a strong association with hypertension risk. Hypothesis: PMCA1 plays an important role in regulation of blood pressure and protection against hypertension and cardiac hypertrophy. Aims: We aim to examine whether there is a functional link between PMCA1 and blood pressure regulation, and the development of hypertension. And to determine the impact this link may have on cardiac structure and function. Methods and Results: To study the role of PMCA1 we generated a global PMCA1 heterozygous knockout mouse (PMCA1 Ht ). PMCA1 Ht mice had 46% to 52% reduction in PMCA1 protein expression compared to the WT, in aorta, heart, kidney and brain. To study the mice under hypertensive stress conditions, 3 month old PMCA1 Ht and wild type (WT) mice were infused via minipump with angiotensin II (1mg/Kg/daily) or water as a control. Upon angiotensin treatment, PMCA1 Ht mice showed a significantly greater increase in systolic (62.24±3.05 mmHg) and diastolic pressure (52.68±4.67 mmHg), in comparison to the WT (33.37±2.91 mmHg and 23.94±4.56 mmHg, respectively), P<0.001, n=12. Moreover, PMCA1 Ht mice showed a significantly greater hypertrophic response as indicated by a greater heart weight to tibia length ratio, cardiomyocyte cell size (410±18.7 μm 2 ), compared to WT mice (340.4±9.8 μm 2 ), and increased expression of B-type natriuretic peptide (BNP), 2.36 ± 0.25 fold change, n =5-6, P< 0.01. Echocardiography showed no significant changes between PMCA1 Ht and WT mice, in heart rate, and in cardiac function, as indicated by fractional shortening and ejection fraction. In addition, PMCA1 Ht mice showed no sign of lung congestion as indicated by lung weight to body weight ratio. Conclusion: ATP2B1 deletion leads to increased blood pressure and cardiac hypertrophy. This provides functional evidence that PMCA1 is involved in blood pressure regulation and protects against the development of hypertension and cardiac hypertrophy.


Author(s):  
Fernanda M Bosada ◽  
Mathilde R Rivaud ◽  
Jae-Sun Uhm ◽  
Sander Verheule ◽  
Karel van Duijvenboden ◽  
...  

Rationale: Atrial Fibrillation (AF) is the most common cardiac arrhythmia diagnosed in clinical practice. Genome-wide association studies have identified AF-associated common variants across 100+ genomic loci, but the mechanism underlying the impact of these variant loci on AF susceptibility in vivo has remained largely undefined. One such variant region, highly associated with AF, is found at 1q24, close to PRRX1, encoding the Paired Related Homeobox 1 transcription factor. Objective: To identify the mechanistic link between the variant region at 1q24 and AF predisposition. Methods and Results: The mouse orthologue of the noncoding variant genomic region (R1A) at 1q24 was deleted using CRISPR genome editing. Among the genes sharing the topologically associated domain with the deleted R1A region (Kifap3, Prrx1, Fmo2, Prrc2c), only the broadly expressed gene Prrx1 was downregulated in mutants, and only in cardiomyocytes. Expression and epigenetic profiling revealed that a cardiomyocyte lineage-specific gene program (Mhrt, Myh6, Rbm20, Tnnt2, Ttn, Ckm) was upregulated in R1A-/- atrial cardiomyocytes, and that Mef2 binding motifs were significantly enriched at differentially accessible chromatin sites. Consistently, Prrx1 suppressed Mef2-activated enhancer activity in HL-1 cells. Mice heterozygous or homozygous for the R1A deletion were susceptible to atrial arrhythmia induction, had atrial conduction slowing and more irregular RR intervals. Isolated R1A-/- mouse left atrial cardiomyocytes showed lower action potential upstroke velocities and sodium current, as well as increased systolic and diastolic calcium concentrations compared to controls. Conclusions: The noncoding AF variant region at 1q24 modulates Prrx1 expression in cardiomyocytes. Cardiomyocyte-specific reduction of Prrx1 expression upon deletion of the noncoding region leads to a profound induction of a cardiac lineage-specific gene program and to propensity for AF. These data indicate that AF-associated variants in humans may exert AF predisposition through reduced PRRX1 expression in cardiomyocytes.


2010 ◽  
Vol 42 (11) ◽  
pp. 961-967 ◽  
Author(s):  
Xuehui Huang ◽  
Xinghua Wei ◽  
Tao Sang ◽  
Qiang Zhao ◽  
Qi Feng ◽  
...  

Biology ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1152
Author(s):  
Mir Asif Iquebal ◽  
Pallavi Mishra ◽  
Ranjeet Maurya ◽  
Sarika Jaiswal ◽  
Anil Rai ◽  
...  

Karnal bunt (KB) of wheat (Triticum aestivum L.), known as partial bunt has its origin in Karnal, India and is caused by Tilletia indica (Ti). Its incidence had grown drastically since late 1960s from northwestern India to northern India in early 1970s. It is a seed, air and soil borne pathogen mainly affecting common wheat, durum wheat, triticale and other related species. The seeds become inedible, inviable and infertile with the precedence of trimethylamine secreted by teliospores in the infected seeds. Initially the causal pathogen was named Tilletia indica but was later renamed Neovossia indica. The black powdered smelly spores remain viable for years in soil, wheat straw and farmyard manure as primary sources of inoculum. The losses reported were as high as 40% in India and also the cumulative reduction of national farm income in USA was USD 5.3 billion due to KB. The present review utilizes information from literature of the past 100 years, since 1909, to provide a comprehensive and updated understanding of KB, its causal pathogen, biology, epidemiology, pathogenesis, etc. Next generation sequencing (NGS) is gaining popularity in revolutionizing KB genomics for understanding and improving agronomic traits like yield, disease tolerance and disease resistance. Genetic resistance is the best way to manage KB, which may be achieved through detection of genes/quantitative trait loci (QTLs). The genome-wide association studies can be applied to reveal the association mapping panel for understanding and obtaining the KB resistance locus on the wheat genome, which can be crossed with elite wheat cultivars globally for a diverse wheat breeding program. The review discusses the current NGS-based genomic studies, assembly, annotations, resistant QTLs, GWAS, technology landscape of diagnostics and management of KB. The compiled exhaustive information can be beneficial to the wheat breeders for better understanding of incidence of disease in endeavor of quality production of the crop.


2021 ◽  
Author(s):  
Abhishek Nag ◽  
Lawrence Middleton ◽  
Ryan S Dhindsa ◽  
Dimitrios Vitsios ◽  
Eleanor M Wigmore ◽  
...  

Genome-wide association studies have established the contribution of common and low frequency variants to metabolic biomarkers in the UK Biobank (UKB); however, the role of rare variants remains to be assessed systematically. We evaluated rare coding variants for 198 metabolic biomarkers, including metabolites assayed by Nightingale Health, using exome sequencing in participants from four genetically diverse ancestries in the UKB (N=412,394). Gene-level collapsing analysis, that evaluated a range of genetic architectures, identified a total of 1,303 significant relationships between genes and metabolic biomarkers (p<1x10-8), encompassing 207 distinct genes. These include associations between rare non-synonymous variants in GIGYF1 and glucose and lipid biomarkers, SYT7 and creatinine, and others, which may provide insights into novel disease biology. Comparing to a previous microarray-based genotyping study in the same cohort, we observed that 40% of gene-biomarker relationships identified in the collapsing analysis were novel. Finally, we applied Gene-SCOUT, a novel tool that utilises the gene-biomarker association statistics from the collapsing analysis to identify genes having similar biomarker fingerprints and thus expand our understanding of gene networks.


2021 ◽  
Vol 17 (3) ◽  
pp. e1008819
Author(s):  
Héctor Climente-González ◽  
Christine Lonjou ◽  
Fabienne Lesueur ◽  
Dominique Stoppa-Lyonnet ◽  
Nadine Andrieu ◽  
...  

Genome-wide association studies (GWAS) explore the genetic causes of complex diseases. However, classical approaches ignore the biological context of the genetic variants and genes under study. To address this shortcoming, one can use biological networks, which model functional relationships, to search for functionally related susceptibility loci. Many such network methods exist, each arising from different mathematical frameworks, pre-processing steps, and assumptions about the network properties of the susceptibility mechanism. Unsurprisingly, this results in disparate solutions. To explore how to exploit these heterogeneous approaches, we selected six network methods and applied them to GENESIS, a nationwide French study on familial breast cancer. First, we verified that network methods recovered more interpretable results than a standard GWAS. We addressed the heterogeneity of their solutions by studying their overlap, computing what we called the consensus. The key gene in this consensus solution was COPS5, a gene related to multiple cancer hallmarks. Another issue we observed was that network methods were unstable, selecting very different genes on different subsamples of GENESIS. Therefore, we proposed a stable consensus solution formed by the 68 genes most consistently selected across multiple subsamples. This solution was also enriched in genes known to be associated with breast cancer susceptibility (BLM, CASP8, CASP10, DNAJC1, FGFR2, MRPS30, and SLC4A7, P-value = 3 × 10−4). The most connected gene was CUL3, a regulator of several genes linked to cancer progression. Lastly, we evaluated the biases of each method and the impact of their parameters on the outcome. In general, network methods preferred highly connected genes, even after random rewirings that stripped the connections of any biological meaning. In conclusion, we present the advantages of network-guided GWAS, characterize their shortcomings, and provide strategies to address them. To compute the consensus networks, implementations of all six methods are available at https://github.com/hclimente/gwas-tools.


Sign in / Sign up

Export Citation Format

Share Document