scholarly journals H3K27me3 is dispensable for early differentiation but required to maintain differentiated cell identity

2020 ◽  
Author(s):  
Sara A. Miller ◽  
Manashree Damle ◽  
Robert E. Kingston

AbstractPolycomb repressive complex 2 (PRC2) catalyzes trimethylation of histone H3 on lysine 27 and is required for normal development of complex eukaryotes. The requirement for H3K27me3 in various aspects of mammalian differentiation is not clear. Though associated with repressed genes, the modification is not sufficient to induce gene repression, and in some instances is not required. To examine the role of the modification in mammalian differentiation, we blocked trimethylation of H3K27 with both a small molecule inhibitor, GSK343, and by introducing a point mutation into EZH2, the catalytic subunit of PRC2. We found that cells with substantively decreased H3K27 tri-methylation were able to differentiate, which contrasts with EZH2 null cells. Different PRC2 targets had varied requirements for H3K27me3 in repressive regulation with a subset that maintained normal levels of repression in the absence of methylation. The primary cellular phenotype when H3K27 tri-methylation was blocked was an inability of the altered cells to maintain a differentiated state when challenged. This phenotype was determined by H3K27me3 deposition both in embryonic stem cells and in the first four days of differentiation. H3K27 tri-methylation therefore was not necessary for formation of differentiated cell states but was required to maintain a stable differentiated state.

Development ◽  
2021 ◽  
pp. dev.196329
Author(s):  
Sara A. Miller ◽  
Manashree Damle ◽  
Jongmin Kim ◽  
Robert E. Kingston

Polycomb repressive complex 2 (PRC2) catalyzes methylation of histone H3 on lysine 27 and is required for normal development of complex eukaryotes. The nature of that requirement is not clear. H3K27me3 is associated with repressed genes, however the modification is not sufficient to induce repression, and in some instances is not required. We blocked full methylation of H3K27 with both a small molecule inhibitor, GSK343 and by introducing a point mutation into EZH2, the catalytic subunit of PRC2. Cells with substantively decreased H3K27 methylation differentiate into embryoid bodies, which contrasts with EZH2 null cells. PRC2 targets had varied requirements for H3K27me3, with a subset that maintained normal levels of repression in the absence of methylation. The primary cellular phenotype of blocked H3K27 methylation was an inability of altered cells to maintain a differentiated state when challenged. This phenotype was determined by H3K27 methylation in embryonic stem cells through the first four days of differentiation. Full H3K27 methylation therefore was not necessary for formation of differentiated cell states during embryoid body formation but was required to maintain a stable differentiated state.


2020 ◽  
Author(s):  
Thomas W. Sheahan ◽  
Viktoria Major ◽  
Kimberly M. Webb ◽  
Elana Bryan ◽  
Philipp Voigt

AbstractThe closely related acetyltransferases CBP and p300 are key regulators of gene expression in metazoans. CBP/p300 acetylate several specific lysine residues within nucleosomes, including histone H3 lysine 27 (H3K27), a hallmark of active enhancers and promoters. However, it has remained largely unclear how specificity of CBP/p300 towards H3K27 is achieved. Here we show that the TAZ2 domain of CBP is required for efficient acetylation of H3K27, while curbing activity towards other lysine residues within nucleosomes. We find that TAZ2 is a sequence-independent DNA binding module, promoting interaction between CBP and nucleosomes, thereby enhancing enzymatic activity and regulating substrate specificity of CBP. TAZ2 is further required to stabilize CBP binding to chromatin in mouse embryonic stem cells, facilitating specificity towards H3K27 and modulating gene expression. These findings reveal a crucial role of TAZ2 in regulating H3K27ac, while highlighting the importance of correct site-specific acetylation for proper regulation of gene expression.


Epigenomes ◽  
2019 ◽  
Vol 3 (3) ◽  
pp. 14 ◽  
Author(s):  
Alessandro Fiorenzano ◽  
Emilia Pascale ◽  
Eduardo Jorge Patriarca ◽  
Gabriella Minchiotti ◽  
Annalisa Fico

The power of embryonic stem cells (ESCs) lies in their ability to self-renew and differentiate. Behind these two unique capabilities is a fine-tuned molecular network that shapes the genetic, epigenetic, and epitranscriptomic ESC plasticity. Although RNA has been shown to be functionally important in only a small minority of long non-coding RNA genes, a growing body of evidence has highlighted the pivotal and intricate role of lncRNAs in chromatin remodeling. Due to their multifaceted nature, lncRNAs interact with DNA, RNA, and proteins, and are emerging as new modulators of extensive gene expression programs through their participation in ESC-specific regulatory circuitries. Here, we review the tight cooperation between lncRNAs and Polycomb repressive complex 2 (PRC2), which is intimately involved in determining and maintaining the ESC epigenetic landscape. The lncRNA-PRC2 partnership is fundamental in securing the fully pluripotent state of ESCs, which must be primed to differentiate properly. We also reflect on the advantages brought to this field of research by the advent of single-cell analysis.


PLoS ONE ◽  
2008 ◽  
Vol 3 (8) ◽  
pp. e2904 ◽  
Author(s):  
Jijun Hao ◽  
Marie A. Daleo ◽  
Clare K. Murphy ◽  
Paul B. Yu ◽  
Joshua N. Ho ◽  
...  

2011 ◽  
Vol 2 (1) ◽  
Author(s):  
Hideaki Tsutsui ◽  
Bahram Valamehr ◽  
Antreas Hindoyan ◽  
Rong Qiao ◽  
Xianting Ding ◽  
...  

1999 ◽  
Vol 27 (16) ◽  
pp. 3276-3282 ◽  
Author(s):  
P. P. H. Van Sloun ◽  
J. G. Jansen ◽  
G. Weeda ◽  
L. H. F. Mullenders ◽  
A. A. van Zeeland ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document