scholarly journals Dynamic extrinsic pacing of the HOX clock in human axial progenitors controls motor neuron subtype specification

2020 ◽  
Author(s):  
Vincent Mouilleau ◽  
Célia Vaslin ◽  
Simona Gribaudo ◽  
Rémi Robert ◽  
Nour Nicolas ◽  
...  

SUMMARYRostro-caudal patterning of vertebrates depends on the temporally progressive activation of HOX genes within axial stem cells that fuel axial embryo elongation. Whether HOX genes sequential activation, the “HOX clock”, is paced by intrinsic chromatin-based timing mechanisms or by temporal changes in extrinsic cues remains unclear. Here, we studied HOX clock pacing in human pluripotent stem cells differentiating into spinal cord motor neuron subtypes which are progenies of axial progenitors. We show that the progressive activation of caudal HOX genes in axial progenitors is controlled by a dynamic increase in FGF signaling. Blocking FGF pathway stalled induction of HOX genes, while precocious increase in FGF alone, or with GDF11 ligand, accelerated the HOX clock. Cells differentiated under accelerated HOX induction generated appropriate posterior motor neuron subtypes found along the human embryonic spinal cord. The HOX clock is thus dynamically paced by exposure parameters to secreted cues. Its manipulation by extrinsic factors alleviates temporal requirements to provide unprecedented synchronized access to human cells of multiple, defined, rostro-caudal identities for basic and translational applications.

Development ◽  
2021 ◽  
Vol 148 (6) ◽  
pp. dev194514
Author(s):  
Vincent Mouilleau ◽  
Célia Vaslin ◽  
Rémi Robert ◽  
Simona Gribaudo ◽  
Nour Nicolas ◽  
...  

ABSTRACTRostro-caudal patterning of vertebrates depends on the temporally progressive activation of HOX genes within axial stem cells that fuel axial embryo elongation. Whether the pace of sequential activation of HOX genes, the 'HOX clock', is controlled by intrinsic chromatin-based timing mechanisms or by temporal changes in extrinsic cues remains unclear. Here, we studied HOX clock pacing in human pluripotent stem cell-derived axial progenitors differentiating into diverse spinal cord motor neuron subtypes. We show that the progressive activation of caudal HOX genes is controlled by a dynamic increase in FGF signaling. Blocking the FGF pathway stalled induction of HOX genes, while a precocious increase of FGF, alone or with GDF11 ligand, accelerated the HOX clock. Cells differentiated under accelerated HOX induction generated appropriate posterior motor neuron subtypes found along the human embryonic spinal cord. The pacing of the HOX clock is thus dynamically regulated by exposure to secreted cues. Its manipulation by extrinsic factors provides synchronized access to multiple human neuronal subtypes of distinct rostro-caudal identities for basic and translational applications.This article has an associated ‘The people behind the papers’ interview.


2001 ◽  
Vol 167 (1) ◽  
pp. 48-58 ◽  
Author(s):  
Qi-lin Cao ◽  
Y.Ping Zhang ◽  
Russell M. Howard ◽  
Winston M. Walters ◽  
Pantelis Tsoulfas ◽  
...  

2016 ◽  
Vol 122 (3) ◽  
pp. 730-737 ◽  
Author(s):  
Esperanza Recio-Pinto ◽  
Jose V. Montoya-Gacharna ◽  
Fang Xu ◽  
Thomas J. J. Blanck

2014 ◽  
Vol 5 (4) ◽  
pp. 87 ◽  
Author(s):  
Irene Faravelli ◽  
Monica Bucchia ◽  
Paola Rinchetti ◽  
Monica Nizzardo ◽  
Chiara Simone ◽  
...  

2016 ◽  
Vol 4 (19) ◽  
pp. 3305-3312 ◽  
Author(s):  
Yadong Tang ◽  
Li Liu ◽  
Junjun Li ◽  
Leqian Yu ◽  
Francesco Paolo Ulloa Severino ◽  
...  

A patch made of crosslinked monolayer nanofibers was used for motor neuron differentiation from human induced pluripotent stem cells and plug-and-play with a commercial multi-electrode array for neuron spike recording.


Neuron ◽  
2014 ◽  
Vol 83 (4) ◽  
pp. 789-796 ◽  
Author(s):  
Paul Lu ◽  
Grace Woodruff ◽  
Yaozhi Wang ◽  
Lori Graham ◽  
Matt Hunt ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3214
Author(s):  
Krisztián Pajer ◽  
Tamás Bellák ◽  
Antal Nógrádi

Hundreds of thousands of people suffer spinal cord injuries each year. The experimental application of stem cells following spinal cord injury has opened a new era to promote neuroprotection and neuroregeneration of damaged tissue. Currently, there is great interest in the intravenous administration of the secretome produced by mesenchymal stem cells in acute or subacute spinal cord injuries. However, it is important to highlight that undifferentiated neural stem cells and induced pluripotent stem cells are able to adapt to the damaged environment and produce the so-called lesion-induced secretome. This review article focuses on current research related to the secretome and the lesion-induced secretome and their roles in modulating spinal cord injury symptoms and functional recovery, emphasizing different compositions of the lesion-induced secretome in various models of spinal cord injury.


2019 ◽  
Vol 7 (23) ◽  
Author(s):  
Siraj Patwa ◽  
Curtis A. Benson ◽  
Lauren Dyer ◽  
Kai‐Lan Olson ◽  
Lakshmi Bangalore ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document