scholarly journals Mechanistic Transmission Modeling of COVID-19 on the Diamond Princess Cruise Ship Demonstrates the Importance of Aerosol Transmission

Author(s):  
Parham Azimi ◽  
Zahra Keshavarz ◽  
Jose Guillermo Cedeno Laurent ◽  
Brent R. Stephens ◽  
Joseph G. Allen

Background The current prevailing position is that coronavirus disease 2019 (COVID-19) is transmitted primarily through large respiratory droplets within close proximity (i.e., 1-2 m) of infected individuals. However, quantitative information on the relative importance of specific transmission pathways of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (i.e., droplets, aerosols, and fomites across short- and long-range distances) remains limited. Methods To evaluate the relative importance of multiple transmission routes for SARS-CoV-2, we leveraged detailed information available from the Diamond Princess Cruise Ship outbreak that occurred in early 2020. We developed a framework that combines stochastic Markov chain and negative exponential dose-response modeling with available empirical data on mechanisms of SARS-CoV-2 dynamics and human behaviors, which informs a modified version of the Reed-Frost epidemic model to predict daily and cumulative daily case counts on the ship. We modeled 21,600 scenarios to generate a matrix of solutions across a full range of assumptions for eight unknown or uncertain epidemic and mechanistic transmission factors, including the magnitude of droplet and aerosol emissions from infected individuals, the infectious dose for deposition of droplets and aerosols to the upper and lower respiratory tracts, and others. Findings A total of 132 model iterations met acceptability criteria (R2 > 0.95 for modeled vs. reported cumulative daily cases and R2 > 0 for daily cases). Analyzing only these successful model iterations yields insights into the likely values for uncertain parameters and quantifies the likely contributions of each defined mode of transmission. Mean estimates of the contributions of short-range, long-range, and fomite transmission modes to infected cases aboard the ship across the entire simulation time period were 35%, 35%, and 30%, respectively. Mean estimates of the contributions of large respiratory droplets and small respiratory aerosols were 41% and 59%. Short-range transmission was the dominant mode after passenger quarantine began, albeit due primarily to aerosol transmission, not droplets. Interpretation Our results demonstrate that aerosol inhalation was likely the dominant contributor to COVID-19 transmission among passengers aboard the Diamond Princess Cruise Ship. Moreover, close-range and long-range transmission likely contributed similarly to disease progression aboard the ship, with fomite transmission playing a smaller role. The passenger quarantine also affected the importance of each mode, demonstrating the impacts of the interventions. Although cruise ships represent unique built environments with high ventilation rates and no air recirculation, these findings underscore the importance of implementing public health measures that target the control of inhalation of aerosols in addition to ongoing measures targeting control of large droplet and fomite transmission, not only aboard cruise ships but in other indoor environments as well.

2021 ◽  
Vol 118 (8) ◽  
pp. e2015482118 ◽  
Author(s):  
Parham Azimi ◽  
Zahra Keshavarz ◽  
Jose Guillermo Cedeno Laurent ◽  
Brent Stephens ◽  
Joseph G. Allen

Several lines of existing evidence support the possibility of airborne transmission of coronavirus disease 2019 (COVID-19). However, quantitative information on the relative importance of transmission pathways of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains limited. To evaluate the relative importance of multiple transmission routes for SARS-CoV-2, we developed a modeling framework and leveraged detailed information available from the Diamond Princess cruise ship outbreak that occurred in early 2020. We modeled 21,600 scenarios to generate a matrix of solutions across a full range of assumptions for eight unknown or uncertain epidemic and mechanistic transmission factors. A total of 132 model iterations met acceptability criteria (R2 > 0.95 for modeled vs. reported cumulative daily cases and R2 > 0 for daily cases). Analyzing only these successful model iterations quantifies the likely contributions of each defined mode of transmission. Mean estimates of the contributions of short-range, long-range, and fomite transmission modes to infected cases across the entire simulation period were 35%, 35%, and 30%, respectively. Mean estimates of the contributions of larger respiratory droplets and smaller respiratory aerosols were 41% and 59%, respectively. Our results demonstrate that aerosol inhalation was likely the dominant contributor to COVID-19 transmission among the passengers, even considering a conservative assumption of high ventilation rates and no air recirculation conditions for the cruise ship. Moreover, close-range and long-range transmission likely contributed similarly to disease progression aboard the ship, with fomite transmission playing a smaller role. The passenger quarantine also affected the importance of each mode, demonstrating the impacts of the interventions.


The potentials used are functions of r , the distance between the centres of the molecules, but not of their relative orientation. The long-range attraction between the molecules is taken to be the sum of terms proportional to r -6 and r ~8 , and the short-range repulsion is proportional to e ~pr . This potential has four parameters: the position and depth of the minimum of the potential, the relative importance of the r -8 term, and the steepness of the exponential repulsion. The second virial and low-pressure Joule-Thomson coefficients are tabulated for the range of parameters likely to be found in actual molecules, and for temperatures from the critical temperature to about 20 times this value. The most important of the three quantum corrections is tabulated over the same ranges.


2020 ◽  
Vol 65 (7) ◽  
pp. 463-472
Author(s):  
Qi Miao ◽  
Chengcheng Pu ◽  
Zhijiang Wang ◽  
Chao-Gan Yan ◽  
Chuan Shi ◽  
...  

Objective: To explore the effect of long-term antipsychotics use on the strength of functional connectivity (FC) in the brains of patients with chronic schizophrenia. Method: We collected resting-state functional magnetic resonance imaging from 15 patients with continuously treated chronic schizophrenia (TCS), 19 patients with minimally TCS (MTCS), and 20 healthy controls (HCs). Then, we evaluated and compared the whole-brain FC strength (FCS; including full-range, short-range, and long-range FCS) among patients with TCS, MTCS, and HCs. Results: Patients with TCS and MTCS showed reduced full-/short-range FC compared with the HCs. No significant differences in the whole-brain FCS (including full-range, short-range, and long-range FCS) or clinical characteristics were identified between patients with TCS and MTCS. Additionally, the FCS in the right fusiform gyrus, right inferior temporal gyrus, and right inferior occipital gyrus negatively correlated with the duration of illness and positively correlated with onset age across all patients with chronic schizophrenia. Conclusions: Regardless of the long-term use of antipsychotics, patients with chronic schizophrenia show decreased FC compared with healthy individuals. For some patients with chronic schizophrenia, the influence of long-term and minimal/short-term antipsychotic exposure on resting-state FC was similar. The decreased full- and short-range FCS in the right fusiform gyrus, right inferior temporal gyrus, and right inferior occipital gyrus may be an ongoing pathological process that is not altered by antipsychotic interventions in patients with chronic schizophrenia. Large-sample, long-term follow-up studies are still needed for further exploration.


Nature ◽  
2021 ◽  
Author(s):  
Siyu Chen ◽  
Linda Lee ◽  
Tasmin Naila ◽  
Susan Fishbain ◽  
Annie Wang ◽  
...  

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Roman Sherrod ◽  
Eric C. O’Quinn ◽  
Igor M. Gussev ◽  
Cale Overstreet ◽  
Joerg Neuefeind ◽  
...  

AbstractThe structural response of Dy2TiO5 oxide under swift heavy ion irradiation (2.2 GeV Au ions) was studied over a range of structural length scales utilizing neutron total scattering experiments. Refinement of diffraction data confirms that the long-range orthorhombic structure is susceptible to ion beam-induced amorphization with limited crystalline fraction remaining after irradiation to 8 × 1012 ions/cm2. In contrast, the local atomic arrangement, examined through pair distribution function analysis, shows only subtle changes after irradiation and is still described best by the original orthorhombic structural model. A comparison to Dy2Ti2O7 pyrochlore oxide under the same irradiation conditions reveals a different behavior: while the dysprosium titanate pyrochlore is more radiation resistant over the long-range with smaller degree of amorphization as compared to Dy2TiO5, the former involves more local atomic rearrangements, best described by a pyrochlore-to-weberite-type transformation. These results highlight the importance of short-range and medium-range order analysis for a comprehensive description of radiation behavior.


1977 ◽  
Vol 38 (C7) ◽  
pp. C7-202-C7-206 ◽  
Author(s):  
R. MORET ◽  
M. HUBER ◽  
R. COMÈS

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
R. S. Markiewicz ◽  
J. Lorenzana ◽  
G. Seibold ◽  
A. Bansil
Keyword(s):  

2002 ◽  
Vol 14 (03) ◽  
pp. 273-302 ◽  
Author(s):  
HERIBERT ZENK

We give a short summary on how to combine and extend results of Combes and Hislop [2] (short range Anderson model with additional displacements), Kirsch, Stollmann and Stolz [13] and [14] (long range Anderson model without displacements) to get localization in an energy interval above the infimum of the almost sure spectrum for a continuous multidimensional Anderson model including long range potentials and displacements.


Sign in / Sign up

Export Citation Format

Share Document