scholarly journals Long-term Reconstruction of Human Airway Epithelium-like Structure in Vivo with hESCs-derived organoid cells

2020 ◽  
Author(s):  
Yong Chen ◽  
Le Han ◽  
Shanshan Zhao ◽  
Jianqi Feng ◽  
Lian Li ◽  
...  

AbstractHuman embryonic stem cells (hESCs) derived lung organoids (HLOs) provide a promising model to study human lung development and disease. However, whether HLO cells could reconstitute airway epithelial structure in vivo remains unclear. Here we established an orthotopic xenograft system for hESCs-derived HLOs, enabling stable reconstruction of human airway epithelium in vivo. Removal of the mouse airway epithelium by naphthalene (NA) treatment enabled xenografted organoid cells survival, differentiation, and reconstruction of airway pseudostratified epithelium in immune-compromised NSG mice. Compared to unsorted pool cells, CD47high cells generated more ciliated cells and possessed thicker pseudostratified epithelium. RNA-seq data revealed that CD47high cells highly expressed epithelial cell, lung progenitor, lung proximal cell and embryonic lung development associated genes. These data reveal that HLOs hold cell therapy potential in regenerative medicine by long-term reconstituting airway epithelium.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nadzeya Marozkina ◽  
Laura Smith ◽  
Yi Zhao ◽  
Joe Zein ◽  
James F. Chmiel ◽  
...  

AbstractEndothelial hemoglobin (Hb)α regulates endothelial nitric oxide synthase (eNOS) biochemistry. We hypothesized that Hb could also be expressed and biochemically active in the ciliated human airway epithelium. Primary human airway epithelial cells, cultured at air–liquid interface (ALI), were obtained by clinical airway brushings or from explanted lungs. Human airway Hb mRNA data were from publically available databases; or from RT-PCR. Hb proteins were identified by immunoprecipitation, immunoblot, immunohistochemistry, immunofluorescence and liquid chromatography- mass spectrometry. Viral vectors were used to alter Hbβ expression. Heme and nitrogen oxides were measured colorimetrically. Hb mRNA was expressed in human ciliated epithelial cells. Heme proteins (Hbα, β, and δ) were detected in ALI cultures by several methods. Higher levels of airway epithelial Hbβ gene expression were associated with lower FEV1 in asthma. Both Hbβ knockdown and overexpression affected cell morphology. Hbβ and eNOS were apically colocalized. Binding heme with CO decreased extracellular accumulation of nitrogen oxides. Human airway epithelial cells express Hb. Higher levels of Hbβ gene expression were associated with airflow obstruction. Hbβ and eNOS were colocalized in ciliated cells, and heme affected oxidation of the NOS product. Epithelial Hb expression may be relevant to human airways diseases.


1993 ◽  
Vol 75 (3) ◽  
pp. 1256-1262 ◽  
Author(s):  
S. C. Erzurum ◽  
C. Danel ◽  
A. Gillissen ◽  
C. S. Chu ◽  
B. C. Trapnell ◽  
...  

Human bronchial epithelium is exquisitely sensitive to high O2 levels, with tracheobronchitis usually developing after 12 h of exposure to 100% O2. To evaluate whether this vulnerability results from inability of the bronchial epithelium to provide adequate antioxidant protection, we quantified antioxidant gene expression in bronchial epithelium of normal volunteers at baseline and after exposure to 100% O2 in vivo. After 14.8 +/- 0.2 h of 100% O2, 24 of 33 individuals had evidence of tracheobronchitis. Baseline gene expression of CuZn superoxide dismutase (SOD), MnSOD, and catalase in bronchial epithelium was very low (CuZnSOD 4.1 +/- 0.8 transcripts/cell, MnSOD 5.1 +/- 0.9, catalase 1.3 +/- 0.2), with control gamma-actin expression relatively abundant (50 +/- 6 transcripts/cell). Importantly, despite 100% O2 exposure sufficient to cause tracheobronchitis in most individuals, antioxidant mRNA transcripts/cell in bronchial epithelium did not increase (P > 0.5). Catalase activity in bronchial epithelium did not change after exposure to hyperoxia (P > 0.05). Total SOD activity increased mildly (P < 0.01) but not sufficiently to protect the epithelium. Together, the very low levels of expression of intracellular antioxidant enzymes and the inability to upregulate expression at the mRNA level with oxidant stress likely have a role in human airway epithelium susceptibility to hyperoxia.


2005 ◽  
Vol 14 (97) ◽  
pp. 131-136 ◽  
Author(s):  
C. Coraux ◽  
R. Hajj ◽  
P. Lesimple ◽  
E. Puchelle

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Hye Kyung Lee ◽  
Olive Jung ◽  
Lothar Hennighausen

AbstractSARS-CoV-2 infection of human airway epithelium activates genetic programs leading to progressive hyperinflammation in COVID-19 patients. Here, we report on transcriptomes activated in primary airway cells by interferons and their suppression by Janus kinase (JAK) inhibitors. Deciphering the regulation of the angiotensin-converting enzyme 2 (ACE2), the receptor for SARS-CoV-2, is paramount for understanding the cell tropism of SARS-CoV-2 infection. ChIP-seq for activating histone marks and Pol II loading identified candidate enhancer elements controlling the ACE2 locus, including the intronic dACE2 promoter. Employing RNA-seq, we demonstrate that interferons activate expression of dACE2 and, to a lesser extent, the genuine ACE2 gene. Interferon-induced gene expression was mitigated by the JAK inhibitors baricitinib and ruxolitinib, used therapeutically in COVID-19 patients. Through integrating RNA-seq and ChIP-seq data we provide an in-depth understanding of genetic programs activated by interferons, and our study highlights JAK inhibitors as suitable tools to suppress these in bronchial cells.


2020 ◽  
Vol 319 (1) ◽  
pp. L126-L136
Author(s):  
Alekh Paranjapye ◽  
Michael J. Mutolo ◽  
Jey Sabith Ebron ◽  
Shih-Hsing Leir ◽  
Ann Harris

The differentiated functions of the human airway epithelium are coordinated by a complex network of transcription factors. These include the pioneer factors Forkhead box A1 and A2 (FOXA1 and FOXA2), which are well studied in several tissues, but their role in airway epithelial cells is poorly characterized. Here, we define the cistrome of FOXA1 and FOXA2 in primary human bronchial epithelial (HBE) cells by chromatin immunoprecipitation with deep-sequencing (ChIP-seq). Next, siRNA-mediated depletion of each factor is used to investigate their transcriptome by RNA-seq. We found that, as predicted from their DNA-binding motifs, genome-wide occupancy of the two factors showed substantial overlap; however, their global impact on gene expression differed. FOXA1 is an abundant transcript in HBE cells, while FOXA2 is expressed at low levels, and both these factors likely exhibit autoregulation and cross-regulation. FOXA1 regulated loci are involved in cell adhesion and the maintenance of epithelial cell identity, particularly through repression of genes associated with epithelial to mesenchymal transition (EMT). FOXA1 also directly targets other transcription factors with a known role in the airway epithelium such as SAM-pointed domain-containing Ets-like factor (SPDEF). The intersection of the cistrome and transcriptome for FOXA1 revealed enrichment of genes involved in epithelial development and tissue morphogenesis. Moreover, depletion of FOXA1 was shown to reduce the transepithelial resistance of HBE cells, confirming the role of this factor in maintaining epithelial barrier integrity.


1998 ◽  
Vol 275 (5) ◽  
pp. L902-L910 ◽  
Author(s):  
Beate Illek ◽  
Horst Fischer

The ability of the flavonoids genistein, apigenin, kaempferol, and quercetin to activate cystic fibrosis transmembrane conductance regulator-mediated Cl currents in human airway epithelium was investigated. We used the patch-clamp technique on single Calu-3 cells, transepithelial measurements in Calu-3 monolayers, and in vivo measurements of nasal potential difference. All flavonoids stimulated Cl currents in transepithelial experiments dose dependently. Half-maximal stimulatory concentrations were kaempferol (5.5 ± 1.7 μM) ≤ apigenin (11.2 ± 2.1 μM) ≤ genistein (13.6 ± 3.5 μM) ≤ quercetin (22.1 ± 4.5 μM). Stimulation of monolayers with forskolin significantly increased their sensitivity to flavonoids: kaempferol (2.5 ± 0.7 μM) ≤ apigenin (3.4 ± 0.9 μM) ≤ quercetin (4.1 ± 0.7 μM) ≤ genistein (6.9 ± 2.2 μM). Forskolin pretreatment significantly reduced the Hill coefficient ( n H) for all flavonoids. Control monolayers showed n H = 2.00 ± 0.21 (all flavonoids combined), and forskolin-stimulated monolayers showed n H = 1.07 ± 0.07, which was not different among the flavonoids. These data imply that the activation kinetics and the binding site(s) for flavonoids were significantly altered by forskolin stimulation. In whole cell patch-clamp experiments, maximal flavonoid-stimulated currents (percentage of forskolin-stimulated currents) were apigenin (429 ± 86%) ≥ kaempferol (318 ± 45%) ≥ genistein (258 ± 20%) = quercetin (256 ± 26%). Stimulation of the currents was caused by an increase in channel open probability. No other Cl conductances contributed significantly to the flavonoid-activated Cl currents in Calu-3 cells. In vivo, flavonoids significantly stimulated nasal potential difference by, on average, 27.8% of isoproterenol responses.


2007 ◽  
Vol 29 (2) ◽  
pp. 139-148 ◽  
Author(s):  
Adriana Heguy ◽  
Ben-Gary Harvey ◽  
Philip L. Leopold ◽  
Igor Dolgalev ◽  
Tina Raman ◽  
...  

To identify genes participating in human airway epithelial repair, we used bronchoscopy and brushing to denude the airway epithelium of healthy individuals, sequentially sampled the same region 7 and 14 days later, and assessed gene expression by Affymetrix microarrays with TaqMan RT-PCR confirmation. Histologically, the injured area was completely covered by a partially redifferentiated epithelial layer after 7 days; by 14 days the airway epithelium was very similar to the uninjured state. At day 7 compared with resting epithelium, there were substantial differences in gene expression pattern, with a distinctive airway epithelial “repair transcriptome” of actively proliferating cells in the process of redifferentiation. The repair transcriptome at 7 days was dominated by cell cycle, signal transduction, metabolism and transport, and transcription genes. Interestingly, the majority of differentially expressed cell cycle genes belonged to the G2 and M phases, suggesting that the proliferating cells were relatively synchronized 1 wk following injury. At 14 days postinjury, the expression profile was similar to that of resting airway epithelium. These observations provide a baseline of the functional gene categories participating in the process of normal human airway epithelial repair that can be used in future studies of injury and repair in airway epithelial diseases.


2021 ◽  
Vol 12 ◽  
Author(s):  
Moira L. Aitken ◽  
Ranjani Somayaji ◽  
Thomas R. Hinds ◽  
Maricela Pier ◽  
Karla Droguett ◽  
...  

The role of inflammation in airway epithelial cells and its regulation are important in several respiratory diseases. When disease is present, the barrier between the pulmonary circulation and the airway epithelium is damaged, allowing serum proteins to enter the airways. We identified that human glycated albumin (GA) is a molecule in human serum that triggers an inflammatory response in human airway epithelial cultures. We observed that single-donor human serum induced IL-8 secretion from primary human airway epithelial cells and from a cystic fibrosis airway cell line (CF1-16) in a dose-dependent manner. IL-8 secretion from airway epithelial cells was time dependent and rapidly increased in the first 4 h of incubation. Stimulation with GA promoted epithelial cells to secrete IL-8, and this increase was blocked by the anti-GA antibody. The IL-8 secretion induced by serum GA was 10–50-fold more potent than TNFα or LPS stimulation. GA also has a functional effect on airway epithelial cells in vitro, increasing ciliary beat frequency. Our results demonstrate that the serum molecule GA is pro-inflammatory and triggers host defense responses including increases in IL-8 secretion and ciliary beat frequency in the human airway epithelium. Although the binding site of GA has not yet been described, it is possible that GA could bind to the receptor for advanced glycated end products (RAGE), known to be expressed in the airway epithelium; however, further experiments are needed to identify the mechanism involved. We highlight a possible role for GA in airway inflammation.


Sign in / Sign up

Export Citation Format

Share Document