antioxidant gene
Recently Published Documents


TOTAL DOCUMENTS

202
(FIVE YEARS 40)

H-INDEX

36
(FIVE YEARS 4)

Nutrients ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 3874
Author(s):  
Kristin Wächter ◽  
Alexander Navarrete Santos ◽  
Anne Großkopf ◽  
Tim Baldensperger ◽  
Marcus A. Glomb ◽  
...  

Advanced glycation end products (AGEs) result from a non-enzymatic reaction of proteins with reactive carbohydrates. Heat-processed food, such as bread, contains high amounts of AGEs. The activation of the NF-κB signaling pathway by bread crust extract (BCE) is well understood. However, it is largely unknown whether NRF2, the master regulator of oxidative stress resistance in mammalian cells, is affected by BCE. We have investigated the molecular mechanisms by which BCE induces antioxidant gene expression in cellular models. Our data showed that soluble extracts from bread crust are capable of stimulating the NRF2 signaling pathway. Furthermore, NRF2 pathway activation was confirmed by microarray and reporter-cell analyses. QRT-PCR measurements and Western blot analyses indicated an induction of antioxidative genes such as HMOX1, GCLM and NQO1 upon BCE treatment. Moreover, BCE pretreated cells had a survival advantage compared to control cells when exposed to oxidative stress. BCE induces phosphorylation of AKT and ERK kinase in EA.hy926 cells. By mass spectrometry, several new, potentially active modifications in BCE were identified. Our findings indicate that BCE activates NRF2-dependent antioxidant gene expression, thus provoking a protection mechanism against oxidative stress-mediated tissue injury. Hence, BCE can be considered as functional food with antioxidative and cardioprotective potential.


Biology ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1072
Author(s):  
Beatriz Salesa ◽  
Roser Sabater i Sabater i Serra ◽  
Ángel Serrano-Aroca

The use of ionic metals such as zinc (Zn2+) is providing promising results in regenerative medicine. In this study, human keratinocytes (HaCaT cells) were treated with different concentrations of zinc chloride (ZnCl2), ranging from 1 to 800 µg/mL, for 3, 12 and 24 h. The results showed a time–concentration dependence with three non-cytotoxic concentrations (10, 5 and 1 µg/mL) and a median effective concentration value of 13.5 µg/mL at a cell exposure to ZnCl2 of 24 h. However, the zinc treatment with 5 or 1 µg/mL had no effect on cell proliferation in HaCaT cells in relation to the control sample at 72 h. The effects of the Zn2+ treatment on the expression of several genes related to glycoprotein synthesis, oxidative stress, proliferation and differentiation were assessed at the two lowest non-cytotoxic concentrations after 24 h of treatment. Out of 13 analyzed genes (superoxide dismutase 1 (SOD1), catalase (CAT), matrix metallopeptidase 1 (MMP1), transforming growth factor beta 1 (TGFB1), glutathione peroxidase 1 (GPX1), fibronectin 1 (FN1), hyaluronan synthase 2 (HAS2), laminin subunit beta 1 (LAMB1), lumican (LUM), cadherin 1 (CDH1), collagen type IV alpha (COL4A1), fibrillin (FBN) and versican (VCAN)), Zn2+ was able to upregulate SOD1, CAT, TGFB1, GPX1, LUM, CDH1, FBN and VCAN, with relative expression levels of at least 1.9-fold with respect to controls. We found that ZnCl2 promoted glycoprotein synthesis and antioxidant gene expression, thus confirming its great potential in biomedicine.


2021 ◽  
Vol 15 ◽  
Author(s):  
Yujin Li ◽  
Ao Li ◽  
Chao Wang ◽  
Xin Jin ◽  
Yaoting Zhang ◽  
...  

Neomycin is a common ototoxic aminoglycoside antibiotic that causes sensory hearing disorders worldwide, and monosialotetrahexosylganglioside (GM1) is reported to have antioxidant effects that protect various cells. However, little is known about the effect of GM1 on neomycin-induced hair cell (HC) ototoxic damage and related mechanism. In this study, cochlear HC-like HEI-OC-1 cells along with whole-organ explant cultures were used to establish an in vitro neomycin-induced HC damage model, and then the apoptosis rate, the balance of oxidative and antioxidant gene expression, reactive oxygen species (ROS) levels and mitochondrial membrane potential (MMP) were measured. GM1 could maintain the balance of oxidative and antioxidant gene expression, inhibit the accumulation of ROS and proapoptotic gene expression, promoted antioxidant gene expression, and reduce apoptosis after neomycin exposure in HEI-OC-1 cells and cultured cochlear HCs. These results suggested that GM1 could reduce ROS aggregation, maintain mitochondrial function, and improve HC viability in the presence of neomycin, possibly through mitochondrial antioxidation. Hence, GM1 may have potential clinical value in protecting against aminoglycoside-induced HC injury.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xueting Ren ◽  
Li Ma ◽  
Nan Wang ◽  
Ruina Zhou ◽  
Jianhua Wu ◽  
...  

Background: Oxidative stress is related to oncogenic transformation in kidney renal clear cell carcinoma (KIRC). We intended to identify a prognostic antioxidant gene signature and investigate its relationship with immune infiltration in KIRC.Methods: With the support of The Cancer Genome Atlas (TCGA) database, we researched the gene expression and clinical data of KIRC patients. Antioxidant related genes with significant differences in expression between KIRC and normal samples were then identified. Through univariate and multivariate Cox analysis, a prognostic gene model was established and all patients were divided into high- and low-risk subgroups. Single sample gene set enrichment analysis was adopted to analyze the immune infiltration, HLA expression, and immune checkpoint genes in different risk groups. Finally, the prognostic nomogram model was established and evaluated.Results: We identified six antioxidant genes significantly correlated with the outcome of KIRC patients as independent predictors, namely DPEP1 (HR = 0.97, P < 0.05), GSTM3 (HR = 0.97, P < 0.05), IYD (HR = 0.33, P < 0.05), KDM3B (HR = 0.96, P < 0.05), PRDX2 (HR = 0.99, P < 0.05), and PRXL2A (HR = 0.96, P < 0.05). The high- and low-risk subgroups of KIRC patients were grouped according to the six-gene signature. Patients with higher risk scores had poorer prognosis, more advanced grade and stage, and more abundance of M0 macrophages, regulatory T cells, and follicular helper T cells. There were statistically significant differences in HLA and checkpoint gene expression between the two risk subgroups. The performance of the nomogram was favorable (concordance index = 0.766) and reliably predicted the 3-year (AUC = 0.792) and 5-year (AUC = 0.766) survival of patients with KIRC.Conclusion: The novel six antioxidant related gene signature could effectively forecast the prognosis of patients with KIRC, supply insights into the interaction between cellular antioxidant mechanisms and cancer, and is an innovative tool for selecting potential patients and targets for immunotherapy.


Author(s):  
Ramasamy Harikrishnan ◽  
Gunapathy Devi ◽  
Hien Van Doan ◽  
Chellam Balasundaram ◽  
Jesu Arockiaraj ◽  
...  

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jianhua Wu ◽  
Xuan Wang ◽  
Nan Wang ◽  
Li Ma ◽  
Xin Xie ◽  
...  

Abstract Background Gastric cancer (GC) commonly relates to dismal prognosis and lacks efficient biomarkers. This study aimed to establish an antioxidant-related gene signature and a comprehensive nomogram to explore novel biomarkers and predict GC prognosis. Methods Clinical and expression data of GC patients were extracted from The Cancer Genome Atlas database. Univariate and multivariate Cox analyses were utilized to construct a score-based gene signature and survival analyses were conducted between high- and low-risk groups. Furthermore, we established a prognostic nomogram integrating clinical variables and antioxidant-related gene signature. Its predictive ability was validated by Harrell' concordance index and calibration curves and an independent internal cohort verified the consistency of the antioxidant gene signature-based nomogram. Results Four antioxidant-related genes (CHAC1, GGT5, GPX8, and PXDN) were significantly associated with overall survival of GC patients but only two genes, CHAC1 (HR = 0.803, P < 0.05) and GPX8 (HR = 1.358, P < 0.05), were confirmed as independent factors. A score-based signature was constructed and could act as an independent prognosis predictor (P < 0.05). Patients with lower scores showed significantly better prognosis (P < 0.05). Comprehensive nomogram combining the antioxidant-related gene signature and clinical parameters (age, gender, grade, and stage) was established and effectively predicted overall survival of GC patients [3-year survival AUC = 0.680, C index = 0.665 (95% CI 0.614–0.716)]. The independent internal validation cohort verified the reliability and good consistency of the model [3-year survival AUC = 0.703, C index = 0.706 (95% CI 0.612–0.800)]. Conclusions Innovative antioxidant-related gene signature and nomogram performed well in assessing GC prognoses. This study enlightened further investigation of antioxidant system and provided novel tools for GC patient management.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 847
Author(s):  
Haranatha R. Potteti ◽  
Lalith K. Venkareddy ◽  
Patrick M. Noone ◽  
Aparna Ankireddy ◽  
Chandramohan R. Tamatam ◽  
...  

The aberrant regulation of inflammatory gene transcription following oxidant and inflammatory stimuli can culminate in unchecked systemic inflammation leading to organ dysfunction. The Nrf2 transcription factor dampens cellular stress and controls inflammation by upregulating antioxidant gene expression and TNFα-induced Protein 3 (TNFAIP3, aka A20) deubiquitinase by controlling NF-kB signaling dampens tissue inflammation. Here, we report that Nrf2 is required for A20 induction by inflammatory stimuli LPS in monocyte/bone marrow derived macrophages (MDMΦs) but not in lung-macrophages (LDMΦs). LPS-induced A20 expression was significantly lower in Nrf2−/− MDMΦs and was not restored by antioxidant supplementation. Nrf2 deficiency markedly impaired LPS-stimulated A20 mRNA expression Nrf2−/− MDMΦs and ChIP assays showed Nrf2 enrichment at the promoter Nrf2−/− MDMΦs upon LPS stimulation, demonstrating that Nrf2 directly regulates A20 expression. Contrary to MDMΦs, LPS-stimulated A20 expression was not largely impaired in Nrf2−/− LDMΦs ex vivo and in vivo and ChIP assays showed lack of increased Nrf2 binding at the A20 promoter in LDMΦ following LPS treatment. Collectively, these results demonstrate a crucial role for Nrf2 in optimal A20 transcriptional induction in macrophages by endotoxin, and this regulation occurs in a contextual manner.


Sign in / Sign up

Export Citation Format

Share Document