scholarly journals Expectancy changes the self-monitoring of voice identity

2020 ◽  
Author(s):  
Joseph F. Johnson ◽  
Michel Belyk ◽  
Michael Schwartze ◽  
Ana P. Pinheiro ◽  
Sonja A. Kotz

ABSTRACTSelf-voice attribution can become difficult when voice characteristics are ambiguous, and functional magnetic resonance imagines (fMRI) investigations of such ambiguity are sparse. We utilized voice-morphing (self-other) to manipulate (un-)certainty in self-voice attribution in a button-press paradigm. This allowed investigating how levels of self-voice certainty alter brain activation in regions monitoring voice identity areas and unexpected changes in voice playback quality. FMRI results confirm a self-voice suppression effect in the right anterior superior temporal gyrus (aSTG) when self-voice attribution was unambiguous. Although the right inferior frontal gyrus (IFG) was more active during self-generated voice compared to when passively-heard, the putative role of this region in detecting unexpected self-voice changes was not confirmed. Further research on the link between right aSTG and IFG is required and may establish a threshold monitoring voice identity in action. The current results have implications for a better understanding of an altered experience of self-voice feedback leading to auditory verbal hallucinations.

2013 ◽  
Author(s):  
Maisy Best ◽  
Tobias Stevens ◽  
Fraser Milton ◽  
Christopher D. Chambers ◽  
Ian P. McLaren ◽  
...  

2006 ◽  
Vol 18 (11) ◽  
pp. 1789-1798 ◽  
Author(s):  
Angela Bartolo ◽  
Francesca Benuzzi ◽  
Luca Nocetti ◽  
Patrizia Baraldi ◽  
Paolo Nichelli

Humor is a unique ability in human beings. Suls [A two-stage model for the appreciation of jokes and cartoons. In P. E. Goldstein & J. H. McGhee (Eds.), The psychology of humour. Theoretical perspectives and empirical issues. New York: Academic Press, 1972, pp. 81–100] proposed a two-stage model of humor: detection and resolution of incongruity. Incongruity is generated when a prediction is not confirmed in the final part of a story. To comprehend humor, it is necessary to revisit the story, transforming an incongruous situation into a funny, congruous one. Patient and neuroimaging studies carried out until now lead to different outcomes. In particular, patient studies found that right brain-lesion patients have difficulties in humor comprehension, whereas neuroimaging studies suggested a major involvement of the left hemisphere in both humor detection and comprehension. To prevent activation of the left hemisphere due to language processing, we devised a nonverbal task comprising cartoon pairs. Our findings demonstrate activation of both the left and the right hemispheres when comparing funny versus nonfunny cartoons. In particular, we found activation of the right inferior frontal gyrus (BA 47), the left superior temporal gyrus (BA 38), the left middle temporal gyrus (BA 21), and the left cerebellum. These areas were also activated in a nonverbal task exploring attribution of intention [Brunet, E., Sarfati, Y., Hardy-Bayle, M. C., & Decety, J. A PET investigation of the attribution of intentions with a nonverbal task. Neuroimage, 11, 157–166, 2000]. We hypothesize that the resolution of incongruity might occur through a process of intention attribution. We also asked subjects to rate the funniness of each cartoon pair. A parametric analysis showed that the left amygdala was activated in relation to subjective amusement. We hypothesize that the amygdala plays a key role in giving humor an emotional dimension.


2017 ◽  
Vol 51 (4) ◽  
pp. 399-415 ◽  
Author(s):  
Bobbie Jean Koen ◽  
Jacqueline Hawkins ◽  
Xi Zhu ◽  
Ben Jansen ◽  
Weihua Fan ◽  
...  

Fluency is used as an indicator of reading proficiency. Many students with reading disabilities are unable to benefit from typical interventions. This study is designed to replicate Lorusso, Facoetti, Paganoni, Pezzani, and Molteni’s (2006) work using FlashWord, a computer program that tachistoscopically presents words in the right or left visual hemi-field in English and locates through fMRI imaging the processing areas involved in fluency development. Our participants were 15 students who were ages 8 to 19 years and had reading disabilities randomly assigned to Intervention ( n = 9) and Delayed Intervention ( n = 6) groups. Functional imaging studies focused on analyzing activations in the left hemisphere (LH) superior temporal gyrus, the inferior frontal gyrus, and the LH inferior occipito-temporal/fusiform area (visual-word form area [VWFA]). Analysis of intervention data showed that 6 of the 9 Intervention group participants (67%) achieved levels of automatic processing and increased their reading rate by an average of 20 words per minute after participating in the FlashWord intervention. Analyses of fMRI group activation maps and mean activation levels in regions of interest document processing changes in VWFA activations that could be related to the increase in reading speed and confirm these locations as essential to developing fluency.


2015 ◽  
Vol 123 (6) ◽  
pp. 1401-1404 ◽  
Author(s):  
Guillaume Herbet ◽  
Gilles Lafargue ◽  
Fabien Almairac ◽  
Sylvie Moritz-Gasser ◽  
François Bonnetblanc ◽  
...  

The authors report the first case of a strikingly unusual speech impairment evoked by intraoperative electrostimulation in a 36-year-old right-handed patient, a well-trained singer, who underwent awake surgery for a right fronto-temporo-insular low-grade glioma. Functionally disrupting the pars opercularis of the right inferior frontal gyrus led the patient to automatically switch from a speaking to a singing mode of language production. Given the central role of the right pars opercularis in the inhibitory control network, the authors propose that this finding may be interpreted as possible evidence for a competitive and independent neurocognitive subnetwork devoted to the melodically intoned articulation of words (normal language-based vs singing-based) in subjects with high expertise. From a more clinical perspective, such data may have implications for awake neurosurgery, especially to preserve the quality of life for singers.


CNS Spectrums ◽  
2013 ◽  
Vol 21 (1) ◽  
pp. 35-42 ◽  
Author(s):  
Erwin Lemche ◽  
Simon A. Surguladze ◽  
Michael J. Brammer ◽  
Mary L. Phillips ◽  
Mauricio Sierra ◽  
...  

ObjectiveThe cerebral mechanisms of traits associated with depersonalization-derealization disorder (DPRD) remain poorly understood.MethodHappy and sad emotion expressions were presented to DPRD and non-referred control (NC) subjects in an implicit event-related functional magnetic resonance imaging (fMRI) design, and correlated with self report scales reflecting typical co-morbidities of DPRD: depression, dissociation, anxiety, somatization.ResultsSignificant differences between the slopes of the two groups were observed for somatization in the right temporal operculum (happy) and ventral striatum, bilaterally (sad). Discriminative regions for symptoms of depression were the right pulvinar (happy) and left amygdala (sad). For dissociation, discriminative regions were the left mesial inferior temporal gyrus (happy) and left supramarginal gyrus (sad). For state anxiety, discriminative regions were the left inferior frontal gyrus (happy) and parahippocampal gyrus (sad). For trait anxiety, discriminative regions were the right caudate head (happy) and left superior temporal gyrus (sad).DiscussionThe ascertained brain regions are in line with previous findings for the respective traits. The findings suggest separate brain systems for each trait.ConclusionOur results do not justify any bias for a certain nosological category in DPRD.


2014 ◽  
Vol 261 (3) ◽  
pp. 600-603 ◽  
Author(s):  
Michael J. Devine ◽  
Paul Bentley ◽  
Brynmor Jones ◽  
Gary Hotton ◽  
Richard J. Greenwood ◽  
...  

2019 ◽  
Vol 11 (2) ◽  
pp. 189-198 ◽  
Author(s):  
Mimpei Kawamura ◽  
Nobuhiro Takahashi ◽  
Yasutaka Kobayashi

Several reports on repetitive transcranial magnetic stimulation (rTMS) for the treatment of aphasia caused by damage to the left inferior frontal gyrus state that low-frequency rTMS therapy for the right inferior frontal gyrus, which is contralateral to the focus area, is effective for improving verbal expression. However, most of these reports have studied the effects of rTMS therapy for comparatively mild aphasia. This study attempted to perform low-frequency rTMS on the right posterior superior temporal gyrus (BA22), which is the center for language reception for aphasia patients with a drastic decline in verbal expression due to damage to the left inferior frontal gyrus and a considerable decline in language perception. The participants performed a language task that was displayed on a computer monitor during rTMS. In addition, intensive speech-language and hearing therapy was performed by the therapist after rTMS. This study reports that a resultant improvement in language perception was observed in the activated brain regions based on neuropsychological tests and functional magnetic resonance imaging. This study is considered to be significant as it highlights a new method of rTMS treatment for severe aphasia.


2008 ◽  
Vol 20 (3) ◽  
pp. 541-552 ◽  
Author(s):  
Eveline Geiser ◽  
Tino Zaehle ◽  
Lutz Jancke ◽  
Martin Meyer

The present study investigates the neural correlates of rhythm processing in speech perception. German pseudosentences spoken with an exaggerated (isochronous) or a conversational (nonisochronous) rhythm were compared in an auditory functional magnetic resonance imaging experiment. The subjects had to perform either a rhythm task (explicit rhythm processing) or a prosody task (implicit rhythm processing). The study revealed bilateral activation in the supplementary motor area (SMA), extending into the cingulate gyrus, and in the insulae, extending into the right basal ganglia (neostriatum), as well as activity in the right inferior frontal gyrus (IFG) related to the performance of the rhythm task. A direct contrast between isochronous and nonisochronous sentences revealed differences in lateralization of activation for isochronous processing as a function of the explicit and implicit tasks. Explicit processing revealed activation in the right posterior superior temporal gyrus (pSTG), the right supramarginal gyrus, and the right parietal operculum. Implicit processing showed activation in the left supramarginal gyrus, the left pSTG, and the left parietal operculum. The present results indicate a function of the SMA and the insula beyond motor timing and speak for a role of these brain areas in the perception of acoustically temporal intervals. Secondly, the data speak for a specific task-related function of the right IFG in the processing of accent patterns. Finally, the data sustain the assumption that the right secondary auditory cortex is involved in the explicit perception of auditory suprasegmental cues and, moreover, that activity in the right secondary auditory cortex can be modulated by top-down processing mechanisms.


2012 ◽  
Vol 108 (2) ◽  
pp. 380-389 ◽  
Author(s):  
Weidong Cai ◽  
Jobi S. George ◽  
Frederick Verbruggen ◽  
Christopher D. Chambers ◽  
Adam R. Aron

Rapidly stopping action engages a network in the brain including the right presupplementary motor area (preSMA), the right inferior frontal gyrus, and the basal ganglia. Yet the functional role of these different regions within the overall network still remains unclear. Here we focused on the role of the right preSMA in behavioral stopping. We hypothesized that the underlying neurocognitive function of this region is one or more of setting up a stopping rule in advance, modulating response tendencies (e.g., slowing down in anticipation of stopping), and implementing stopping when the stop signal occurs. We performed two experiments with magnetic resonance imaging (MRI)–guided, event-related, transcranial magnetic stimulation(TMS), during the performance of variants of the stop signal task. In experiment 1 we show that stimulation of the right preSMA versus vertex (control site) slowed the implementation of stopping (measured via stop signal reaction time) but had no influence on modulation of response tendencies. In experiment 2, we showed that stimulation of the right preSMA slowed implementation of stopping in a mechanistically selective form of stopping but had no influence on setting up stopping rules. The results go beyond the replication of prior findings by showing that TMS of the right preSMA impairs stopping behavior (including a behaviorally selective form of stopping) through a specific disruption of the implementation of stopping. Future studies are required to establish whether this was due to stimulation of the right preSMA itself or because of remote effects on the wider stopping network.


Sign in / Sign up

Export Citation Format

Share Document