Dissociable brain correlates for depression, anxiety, dissociation, and somatization in depersonalization-derealization disorder

CNS Spectrums ◽  
2013 ◽  
Vol 21 (1) ◽  
pp. 35-42 ◽  
Author(s):  
Erwin Lemche ◽  
Simon A. Surguladze ◽  
Michael J. Brammer ◽  
Mary L. Phillips ◽  
Mauricio Sierra ◽  
...  

ObjectiveThe cerebral mechanisms of traits associated with depersonalization-derealization disorder (DPRD) remain poorly understood.MethodHappy and sad emotion expressions were presented to DPRD and non-referred control (NC) subjects in an implicit event-related functional magnetic resonance imaging (fMRI) design, and correlated with self report scales reflecting typical co-morbidities of DPRD: depression, dissociation, anxiety, somatization.ResultsSignificant differences between the slopes of the two groups were observed for somatization in the right temporal operculum (happy) and ventral striatum, bilaterally (sad). Discriminative regions for symptoms of depression were the right pulvinar (happy) and left amygdala (sad). For dissociation, discriminative regions were the left mesial inferior temporal gyrus (happy) and left supramarginal gyrus (sad). For state anxiety, discriminative regions were the left inferior frontal gyrus (happy) and parahippocampal gyrus (sad). For trait anxiety, discriminative regions were the right caudate head (happy) and left superior temporal gyrus (sad).DiscussionThe ascertained brain regions are in line with previous findings for the respective traits. The findings suggest separate brain systems for each trait.ConclusionOur results do not justify any bias for a certain nosological category in DPRD.

2020 ◽  
Vol 61 (10) ◽  
pp. 1388-1397
Author(s):  
Yi Cheng ◽  
Li Yan ◽  
Liqun Hu ◽  
Hongyun Wu ◽  
Xin Huang ◽  
...  

Background Previous studies have linked high myopia (HM) to brain activity, and the difference between HM and low myopia (LM) can be assessed. Purpose To study the differences in functional networks of brain activity between HM and LM by the voxel-level degree centrality (DC) method. Material and Methods Twenty-eight patients with HM (10 men, 18 women), 18 patients with LM (4 men, 14 women), and 59 healthy controls (27 men, 32 women) were enrolled in this study. The voxel-level DC method was used to assess spontaneous brain activity. Correlation analysis was used to explore the change of average DC value in different brain regions, in order to analyze differences in brain activity between HM and LM. Results DC values of the right cerebellum anterior lobe/brainstem, right parahippocampal gyrus, and left caudate in HM patients were significantly higher than those in LM patients ( P < 0.05). In contrast, DC values of the left medial frontal gyrus, right inferior frontal gyrus, left middle frontal gyrus, and left inferior parietal lobule were significantly lower in patients with HM ( P < 0.05). However, there was no correlation between behavior and average DC values in different brain regions ( P < 0.05). Conclusion Different changes in brain regions between HM and LM may indicate differences in neural mechanisms between HM and LM. DC values could be useful as biomarkers for differences in brain activity between patients with HM and LM. This study provides a new method to assess differences in functional networks of brain activity between patients with HM and LM.


2019 ◽  
Vol 11 (2) ◽  
pp. 189-198 ◽  
Author(s):  
Mimpei Kawamura ◽  
Nobuhiro Takahashi ◽  
Yasutaka Kobayashi

Several reports on repetitive transcranial magnetic stimulation (rTMS) for the treatment of aphasia caused by damage to the left inferior frontal gyrus state that low-frequency rTMS therapy for the right inferior frontal gyrus, which is contralateral to the focus area, is effective for improving verbal expression. However, most of these reports have studied the effects of rTMS therapy for comparatively mild aphasia. This study attempted to perform low-frequency rTMS on the right posterior superior temporal gyrus (BA22), which is the center for language reception for aphasia patients with a drastic decline in verbal expression due to damage to the left inferior frontal gyrus and a considerable decline in language perception. The participants performed a language task that was displayed on a computer monitor during rTMS. In addition, intensive speech-language and hearing therapy was performed by the therapist after rTMS. This study reports that a resultant improvement in language perception was observed in the activated brain regions based on neuropsychological tests and functional magnetic resonance imaging. This study is considered to be significant as it highlights a new method of rTMS treatment for severe aphasia.


2019 ◽  
Vol 46 (3) ◽  
pp. 633-642 ◽  
Author(s):  
Helene Hjelmervik ◽  
Alexander R Craven ◽  
Igne Sinceviciute ◽  
Erik Johnsen ◽  
Kristiina Kompus ◽  
...  

Abstract Glutamate (Glu), gamma amino-butyric acid (GABA), and excitatory/inhibitory (E/I) imbalance have inconsistently been implicated in the etiology of schizophrenia. Elevated Glu levels in language regions have been suggested to mediate auditory verbal hallucinations (AVH), the same regions previously associated with neuronal hyperactivity during AVHs. It is, however, not known whether alterations in Glu levels are accompanied by corresponding GABA alterations, nor is it known if Glu levels are affected in brain regions with known neuronal hypo-activity. Using magnetic resonance spectroscopy (MRS), we measured Glx (Glu+glutamine) and GABA+ levels in the anterior cingulate cortex (ACC), left and right superior temporal gyrus (STG), and left inferior frontal gyrus (IFG), in a sample of 77 schizophrenia patients and 77 healthy controls. Two MRS-protocols were used. Results showed a marginally significant positive correlation in the left STG between Glx and AVHs, whereas a significant negative correlation was found in the ACC. In addition, high-hallucinating patients as a group showed decreased ACC and increased left STG Glx levels compared to low-hallucinating patients, with the healthy controls in between the 2 hallucinating groups. No significant differences were found for GABA+ levels. It is discussed that reduced ACC Glx levels reflect an inability of AVH patients to cognitively inhibit their “voices” through neuronal hypo-activity, which in turn originates from increased left STG Glu levels and neuronal hyperactivity. A revised E/I-imbalance model is proposed where Glu-Glu imbalance between brain regions is emphasized rather than Glu-GABA imbalance within regions, for the understanding of the underlying neurochemistry of AVHs.


2020 ◽  
Vol 10 (4) ◽  
pp. 214
Author(s):  
April C. May ◽  
Joanna Jacobus ◽  
Jennifer L. Stewart ◽  
Alan N. Simmons ◽  
Martin P. Paulus ◽  
...  

Alcohol and cannabis use are highly prevalent among adolescents and associated with negative consequences. Understanding motivations behind substance use in youth is important for informing prevention and intervention efforts. The present study aims to examine negative reinforcement principles of substance use among adolescent cannabis and alcohol users by pairing a cue reactivity paradigm with an aversive interoceptive stimulus. Adolescents (ages 15–17), classified as controls (CTL; n = 18), cannabis and/or alcohol experimenters (CAN+ALC-EXP; n = 16), or individuals meeting clinical criteria for cannabis and/or alcohol use disorder (CAN+ALC-SUD; n = 13) underwent functional magnetic resonance imaging during which they experienced an aversive interoceptive probe delivered via breathing load while simultaneously performing a cue reactivity paradigm. Participants also provided self-report ratings of how their substance use is positively or negatively reinforced. While experiencing the breathing load, CAN+ALC-SUD exhibited greater (p < 0.05) deactivation in the right amygdala, the left inferior frontal gyrus, and the left parahippocampal gyrus than CAN+ALC-EXP and CTL, who did not differ. Across all substance users, activation during the breathing load within the left parahippocampal gyrus negatively correlated with cannabis and alcohol lifetime use episodes and the left inferior frontal gyrus activity negatively correlated with lifetime alcohol use episodes. CAN+ALC-SUD reported experiencing more positive and negative reinforcement of using their substance of choice than CAN+ALC-EXP; both user groups reported higher levels of positive than negative reinforcement. Adolescents with a cannabis/alcohol use disorder demonstrate an altered response to interoceptive perturbations. However, adolescent cannabis/alcohol use does not appear to be driven by negative reinforcement, as viewing substance images did not dampen this response. Based on self-report data, the experience of positive reinforcement may be stronger for adolescents. Future studies should examine whether positive reinforcement contributes to adolescent substance use.


2003 ◽  
Vol 17 (2) ◽  
pp. 87-93 ◽  
Author(s):  
Anne Schienle ◽  
Axel Schäfer ◽  
Rudolf Stark ◽  
Bertram Walter ◽  
Peter Kirsch ◽  
...  

Abstract An elevated disgust sensitivity (DS) is considered to be a vulnerability factor for the development of a blood-injection-injury (BII) phobia. Within the present functional Magnetic Resonance Imaging (fMRI) study, 12 female BII phobics were scanned while viewing alternating blocks of 40 disgust-inducing, 40 fear-inducing, and 40 affectively neutral pictures. Each block lasted 60s and was repeated six times during the experiment. All scenes were phobia-irrelevant. Afterwards, the subjects gave affective ratings for the pictures and described their DS on a self-report measure for different areas (e.g., poor hygiene, unusual food, death/deformation). The responses were compared with those of 12 nonphobic females. The BII phobics showed a stronger occipital activation within the right cuneus and lingual gyrus during the first viewing of the disgusting pictures. Aside from this finding, which could be interpreted as reflecting increased attention, there was little evidence for a generally elevated DS in BII phobia. On the DS questionnaire, the patients had indicated a greater reactivity only for disorder-relevant contents (death/deformation). Further, both groups gave similar disgust ratings for the pictures and showed comparable brain-dynamic responses over all blocks of the disgust condition, which included the activation of both amygdalae and the left inferior frontal gyrus.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Kanako Sato ◽  
Eiji Kirino ◽  
Shoji Tanaka

The brain changes flexibly due to various experiences during the developmental stages of life. Previous voxel-based morphometry (VBM) studies have shown volumetric differences between musicians and nonmusicians in several brain regions including the superior temporal gyrus, sensorimotor areas, and superior parietal cortex. However, the reported brain regions depend on the study and are not necessarily consistent. By VBM, we investigated the effect of musical training on the brain structure by comparing university students majoring in music with those majoring in nonmusic disciplines. All participants were right-handed healthy Japanese females. We divided the nonmusic students into two groups and therefore examined three groups: music expert (ME), music hobby (MH), and nonmusic (NM) group. VBM showed that the ME group had the largest gray matter volumes in the right inferior frontal gyrus (IFG; BA 44), left middle occipital gyrus (BA 18), and bilateral lingual gyrus. These differences are considered to be caused by neuroplasticity during long and continuous musical training periods because the MH group showed intermediate volumes in these regions.


2021 ◽  
pp. 216770262110302
Author(s):  
M. Justin Kim ◽  
Maxwell L. Elliott ◽  
Annchen R. Knodt ◽  
Ahmad R. Hariri

Past research on the brain correlates of trait anger has been limited by small sample sizes, a focus on relatively few regions of interest, and poor test–retest reliability of functional brain measures. To address these limitations, we conducted a data-driven analysis of variability in connectome-wide functional connectivity in a sample of 1,048 young adult volunteers. Multidimensional matrix regression analysis showed that self-reported trait anger maps onto variability in the whole-brain functional connectivity patterns of three brain regions that serve action-related functions: bilateral supplementary motor areas and the right lateral frontal pole. We then demonstrate that trait anger modulates the functional connectivity of these regions with canonical brain networks supporting somatomotor, affective, self-referential, and visual information processes. Our findings offer novel neuroimaging evidence for interpreting trait anger as a greater propensity to provoked action, which supports ongoing efforts to understand its utility as a potential transdiagnostic marker for disordered states characterized by aggressive behavior.


2006 ◽  
Vol 18 (11) ◽  
pp. 1789-1798 ◽  
Author(s):  
Angela Bartolo ◽  
Francesca Benuzzi ◽  
Luca Nocetti ◽  
Patrizia Baraldi ◽  
Paolo Nichelli

Humor is a unique ability in human beings. Suls [A two-stage model for the appreciation of jokes and cartoons. In P. E. Goldstein & J. H. McGhee (Eds.), The psychology of humour. Theoretical perspectives and empirical issues. New York: Academic Press, 1972, pp. 81–100] proposed a two-stage model of humor: detection and resolution of incongruity. Incongruity is generated when a prediction is not confirmed in the final part of a story. To comprehend humor, it is necessary to revisit the story, transforming an incongruous situation into a funny, congruous one. Patient and neuroimaging studies carried out until now lead to different outcomes. In particular, patient studies found that right brain-lesion patients have difficulties in humor comprehension, whereas neuroimaging studies suggested a major involvement of the left hemisphere in both humor detection and comprehension. To prevent activation of the left hemisphere due to language processing, we devised a nonverbal task comprising cartoon pairs. Our findings demonstrate activation of both the left and the right hemispheres when comparing funny versus nonfunny cartoons. In particular, we found activation of the right inferior frontal gyrus (BA 47), the left superior temporal gyrus (BA 38), the left middle temporal gyrus (BA 21), and the left cerebellum. These areas were also activated in a nonverbal task exploring attribution of intention [Brunet, E., Sarfati, Y., Hardy-Bayle, M. C., & Decety, J. A PET investigation of the attribution of intentions with a nonverbal task. Neuroimage, 11, 157–166, 2000]. We hypothesize that the resolution of incongruity might occur through a process of intention attribution. We also asked subjects to rate the funniness of each cartoon pair. A parametric analysis showed that the left amygdala was activated in relation to subjective amusement. We hypothesize that the amygdala plays a key role in giving humor an emotional dimension.


2021 ◽  
Author(s):  
Zhaoqi Zhang ◽  
Qiming Yuan ◽  
Zeping Liu ◽  
Man Zhang ◽  
Junjie Wu ◽  
...  

Abstract Writing sequences play an important role in handwriting of Chinese characters. However, little is known regarding the integral brain patterns and network mechanisms of processing Chinese character writing sequences. The present study decoded brain patterns during observing Chinese characters in motion by using multi-voxel pattern analysis (MVPA), meta-analytic decoding analysis, and extended unified structural equation model (euSEM). We found that perception of Chinese character writing sequence recruited brain regions not only for general motor schema processing, i.e., the right inferior frontal gyrus, shifting and inhibition functions, i.e., the right postcentral gyrus and bilateral pre-SMA/dACC, but also for sensorimotor functions specific for writing sequences. More importantly, these brain regions formed a cooperatively top-down brain network where information was transmitted from brain regions for general motor schema processing to those specific for writing sequences. These findings not only shed light on the neural mechanisms of Chinese character writing sequences, but also extend the hierarchical control model on motor schema processing.


2021 ◽  
Author(s):  
Mengxing Wang ◽  
Xiangyu Zheng ◽  
Zhaoxia Qin ◽  
Jun Ma ◽  
Xiaoxia Du

Abstract Background: Primary monosymptomatic nocturnal enuresis (PMNE) is a common disorder among school-age children. Previous research has suggested that the prefrontal cortex (PFC) is essential to maintain urine storage in bladder control. We hypothesized that children with PMNE have functional deficits in several brain regions, especially the PFC, during urine storage. In this work, we investigated 30 children with PMNE and 28 controls in a state of natural urine holding to evaluate dysfunction in the bladder control network by applying degree centrality (DC) analysis methods based on resting-state functional magnetic resonance imaging. And seed-based functional connectivity (FC) analysis was used to investigate whether the dysfunctional areas exhibited altered FC with other brain regions.Results: Compared with the typical healthy children, the children with PMNE showed increased DC in the right inferior frontal gyrus (IFG). Also, the right IFG showed increased connectivity with the left middle and inferior frontal gyri and the right precuneus extending to the cuneus in the children with PMNE.Conclusion: The children with PMNE showed abnormal neural activity during urine storage and exhibited increased DC in the right IFG and increased connectivity with the left PFC and right precuneus during urine storage. These results suggest that compensatory effects may be associated with the right IFG combined with the precuneus and left PFC working together to maintain high vigilance and improve micturition's inhibition function to preserve the state of urine holding in children with PMNE.


Sign in / Sign up

Export Citation Format

Share Document