scholarly journals Molecular-scale visualization of sarcomere contraction within native cardiomyocytes

2020 ◽  
Author(s):  
Laura Burbaum ◽  
Jonathan Schneider ◽  
Sarah Scholze ◽  
Ralph T Böttcher ◽  
Wolfgang Baumeister ◽  
...  

Sarcomeres, the basic contractile units of striated muscle, produce the forces driving muscular contraction through cross-bridge interactions between actin-containing thin filaments and myosin II-based thick filaments. Until now, direct visualization of the molecular architecture underlying sarcomere contractility has remained elusive. Here, we use in situ cryo-electron to-mography to unveil sarcomere contraction in frozen-hydrated neonatal rat cardiomyocytes. We show that the hexagonal lattice of the thick filaments is already established at the neonatal stage, with an excess of thin filaments outside the trigonal positions. Structural assessment of actin polarity by subtomogram averaging reveals that thin filaments in the fully activated state form overlapping arrays of opposite polarity in the center of the sarcomere. Our approach provides direct evidence for thin filament sliding during muscle contraction and may serve as a basis for structural understanding of thin filament activation and actomyosin interactions inside unperturbed cellular environments.

1970 ◽  
Vol 47 (1) ◽  
pp. 183-196 ◽  
Author(s):  
Robert V. Rice ◽  
Joan A. Moses ◽  
G. M. McManus ◽  
Arlene C. Brady ◽  
Lorraine M. Blasik

Ordered arrays of thin filaments (65 A diameter) along with other apparently random arrangements of thin and thick filaments (100–200 A diameter) are observed in contracted guinea pig taenia coli rapidly fixed in glutaraldehyde. The thin-filament arrays vary from a few to more than 100 filaments in each array. The arrays are scattered among isolated thin and thick filaments. Some arrays are regular such as hexagonal; other arrays tend to be circular. However, few examples of rosettes with regular arrangements of thin filaments surrounding thick filaments are seen. Optical transforms of electron micrographs of thin-filament arrays give a nearest-neighbor spacing of the thin filaments in agreement with the "actin" filament spacing from x-ray diffraction experiments. Many thick filaments are closely associated with thin-filament arrays. Some thick filaments are hollow circles, although triangular shapes are also found. Thin-filament arrays and thick filaments extend into the cell for distances of at least a micron. Partially relaxed taenia coli shows thin-filament arrays but few thick filaments. The suggestion that thick filaments aggregate prior to contraction and disaggregate during relaxation is promoted by these observations. The results suggest that a sliding filament mechanism operates in smooth muscle as well as in striated muscle.


1968 ◽  
Vol 37 (1) ◽  
pp. 105-116 ◽  
Author(s):  
Robert E. Kelly ◽  
Robert V. Rice

Thick myosin filaments, in addition to actin filaments, were found in sections of glycerinated chicken gizzard smooth muscle when fixed at a pH below 6.6. The thick filaments were often grouped into bundles and run in the longitudinal axis of the smooth muscle cell. Each thick filament was surrounded by a number of thin filaments, giving the filament arrangement a rosette appearance in cross-section. The exact ratio of thick filaments to thin filaments could not be determined since most arrays were not so regular as those commonly found in striated muscle. Some rosettes had seven or eight thin filaments surrounding a single thick filament. Homogenates of smooth muscle of chicken gizzard also showed both thick and thin filaments when the isolation was carried out at a pH below 6.6, but only thin filaments were found at pH 7.4. No Z or M lines were observed in chicken gizzard muscle containing both thick and thin filaments. The lack of these organizing structures may allow smooth muscle myosin to disaggregate readily at pH 7.4.


1977 ◽  
Vol 75 (2) ◽  
pp. 366-380 ◽  
Author(s):  
M M Dewey ◽  
B Walcott ◽  
D E Colflesh ◽  
H Terry ◽  
R J Levine

Here we describe the change in thick filament length in striated muscle of Limulus, the horseshoe crab. Long thick filaments (4.0 microns) are isolated from living, unstimulated Limulus striated muscle while those isolated from either electrically or K+-stimulated fibers are significantly shorter (3.1 microns) (P less than 0.001). Filaments isolated from muscle glycerinated at long sarcomere lengths are long (4.4 microns) while those isolated from muscle glycerinated at short sarcomere lengths are short (2.9 microns) and the difference is significant (P less than 0.001). Thin filaments are 2.4 microns in length. The shortening of thick filaments is related to the wide range of sarcomere lengths exhibited by Limulus telson striated muscle.


1956 ◽  
Vol 2 (4) ◽  
pp. 157-162 ◽  
Author(s):  
David Spiro

1. Rest and equilibrium length muscle sarcomeres are composed of thin filaments (actin) which traverse the sarcomeres from the Z membranes up to the H band; at this level the filaments are considerably thicker and less numerous. 2. Shortening of muscle is associated with a transformation of thin into thick filaments in the A band. 3. These observations are discussed in terms of interaction of actin and myosin to form a supercoiled structure as the basis of contraction.


2021 ◽  
Vol 153 (3) ◽  
Author(s):  
Weikang Ma ◽  
Sebastian Duno-Miranda ◽  
Thomas Irving ◽  
Roger Craig ◽  
Raúl Padrón

Myosin molecules in the relaxed thick filaments of striated muscle have a helical arrangement in which the heads of each molecule interact with each other, forming the interacting-heads motif (IHM). In relaxed mammalian skeletal muscle, this helical ordering occurs only at temperatures >20°C and is disrupted when temperature is decreased. Recent x-ray diffraction studies of live tarantula skeletal muscle have suggested that the two myosin heads of the IHM (blocked heads [BHs] and free heads [FHs]) have very different roles and dynamics during contraction. Here, we explore temperature-induced changes in the BHs and FHs in relaxed tarantula skeletal muscle. We find a change with decreasing temperature that is similar to that in mammals, while increasing temperature induces a different behavior in the heads. At 22.5°C, the BHs and FHs containing ADP.Pi are fully helically organized, but they become progressively disordered as temperature is lowered or raised. Our interpretation suggests that at low temperature, while the BHs remain ordered the FHs become disordered due to transition of the heads to a straight conformation containing Mg.ATP. Above 27.5°C, the nucleotide remains as ADP.Pi, but while BHs remain ordered, half of the FHs become progressively disordered, released semipermanently at a midway distance to the thin filaments while the remaining FHs are docked as swaying heads. We propose a thermosensing mechanism for tarantula skeletal muscle to explain these changes. Our results suggest that tarantula skeletal muscle thick filaments, in addition to having a superrelaxation–based ATP energy-saving mechanism in the range of 8.5–40°C, also exhibit energy saving at lower temperatures (<22.5°C), similar to the proposed refractory state in mammals.


2010 ◽  
Vol 2010 ◽  
pp. 1-14 ◽  
Author(s):  
Mark S. Miller ◽  
Bertrand C. W. Tanner ◽  
Lori R. Nyland ◽  
Jim O. Vigoreaux

The scaffold of striated muscle is predominantly comprised of myosin and actin polymers known as thick filaments and thin filaments, respectively. The roles these filaments play in muscle contraction are well known, but the extent to which variations in filament mechanical properties influence muscle function is not fully understood. Here we review information on the material properties of thick filaments, thin filaments, and their primary constituents; we also discuss ways in which mechanical properties of filaments impact muscle performance.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mert Colpan ◽  
Jessika Iwanski ◽  
Carol C. Gregorio

AbstractThe precise assembly of actin-based thin filaments is crucial for muscle contraction. Dysregulation of actin dynamics at thin filament pointed ends results in skeletal and cardiac myopathies. Here, we discovered adenylyl cyclase-associated protein 2 (CAP2) as a unique component of thin filament pointed ends in cardiac muscle. CAP2 has critical functions in cardiomyocytes as it depolymerizes and inhibits actin incorporation into thin filaments. Strikingly distinct from other pointed-end proteins, CAP2’s function is not enhanced but inhibited by tropomyosin and it does not directly control thin filament lengths. Furthermore, CAP2 plays an essential role in cardiomyocyte maturation by modulating pre-sarcomeric actin assembly and regulating α-actin composition in mature thin filaments. Identification of CAP2’s multifunctional roles provides missing links in our understanding of how thin filament architecture is regulated in striated muscle and it reveals there are additional factors, beyond Tmod1 and Lmod2, that modulate actin dynamics at thin filament pointed ends.


2015 ◽  
Vol 112 (44) ◽  
pp. 13573-13578 ◽  
Author(s):  
Christopher T. Pappas ◽  
Rachel M. Mayfield ◽  
Christine Henderson ◽  
Nima Jamilpour ◽  
Cathleen Cover ◽  
...  

Leiomodin 2 (Lmod2) is an actin-binding protein that has been implicated in the regulation of striated muscle thin filament assembly; its physiological function has yet to be studied. We found that knockout of Lmod2 in mice results in abnormally short thin filaments in the heart. We also discovered that Lmod2 functions to elongate thin filaments by promoting actin assembly and dynamics at thin filament pointed ends. Lmod2-KO mice die as juveniles with hearts displaying contractile dysfunction and ventricular chamber enlargement consistent with dilated cardiomyopathy. Lmod2-null cardiomyocytes produce less contractile force than wild type when plated on micropillar arrays. Introduction of GFP-Lmod2 via adeno-associated viral transduction elongates thin filaments and rescues structural and functional defects observed in Lmod2-KO mice, extending their lifespan to adulthood. Thus, to our knowledge, Lmod2 is the first identified mammalian protein that functions to elongate actin filaments in the heart; it is essential for cardiac thin filaments to reach a mature length and is required for efficient contractile force and proper heart function during development.


2018 ◽  
Author(s):  
A. V. Inchingolo ◽  
M. Mihailescu ◽  
D. Hongsheng ◽  
N. M. Kad

AbstractRegulated thin filaments (RTFs) tightly control striated muscle contraction through calcium binding to troponin, which in turn shifts the position of tropomyosin on actin to expose myosin binding sites. The binding of the first myosin holds tropomyosin in a position such that more myosin binding sites on actin are available, resulting in cooperative activation. Troponin and tropomyosin also act to turn off the thin filament; however, this is antagonized by the high local concentration of myosin, questioning how the thin filament relaxes. To provide molecular details of deactivation we use the RTF tightrope assay, in which single RTFs are suspended between pedestals above a microscope coverslip surface. Single molecule imaging of GFP tagged myosin-S1 (S1-GFP) is used to follow the activation of RTF tightropes. In sub-maximal activation conditions, S1-GFP molecules bind forming metastable clusters, from which release and rebinding of S1-GFP leads to prolonged activation in these regions. Because the RTFs are not fully active we are able to directly observe deactivation in real time. Using a Reversible Jump Markov Chain Monte Carlo model we are able to dynamically assess the fate of active regions. This analysis reveals that myosin binding occurs in a stochastic stepwise fashion; however, an unexpectedly large probability of multiple simultaneous detachments is observed. This suggests that deactivation of the thin filament is a coordinated, active process.


Sign in / Sign up

Export Citation Format

Share Document