Three-Dimensional Imaging of Toxoplasma gondii–Host Cell Interactions within the Parasitophorous Vacuole

2004 ◽  
Vol 10 (5) ◽  
pp. 580-585 ◽  
Author(s):  
Heide Schatten ◽  
Hans Ris

The protozoan parasite Toxoplasma gondii is a representative of apicomplexan parasites that invades host cells through an unconventional motility mechanism. During host cell invasion it forms a specialized membrane-surrounded compartment that is called the parasitophorous vacuole. The interactions between the host cell and parasite membranes are complex and recent studies have revealed in more detail that both the host cell and the parasite membrane contribute to the formation of the parasitophorous vacuole. By using our a new specimen preparation technique that allows three-dimensional imaging of thick-sectioned internal cell structures with high-resolution, low-voltage field emission scanning electron microscopy, we were able to visualize continuous structural interactions of the host cell membrane with the parasite within the parasitophorous vacuole. Fibrous and tubular material extends from the host cell membrane and is connected to parasite membrane components. Shorter protrusions are also elaborated from the parasite. Several of these shorter fine protrusions connect to the fibrous material of the host cell membrane. The elaborate network may be used for modifications of the parasitophorous vacuole membrane that will allow utilization of nutrients from the host cell by the parisite while it is being protected from host cell attacks. The structural interactions between parasite and host cells undergo time-dependent changes, and a fission pore is the most prominent structure left connecting the parasite with the host cell. The fission pore is anchored in the host cell by thick structural components of unknown nature. The new information gained with this technique includes structural details of fibrous and tubular material that is continuous between the parasite and host cell and can be imaged in three dimensions. We present this technique as a tool to investigate more fully the complex structural interactions of the host cell and the parasite residing in the parasitophorous vacuole.

2005 ◽  
Vol 42 (6) ◽  
pp. 788-796 ◽  
Author(s):  
C. A. Cummings ◽  
R. J. Panciera ◽  
K. M. Kocan ◽  
J. S. Mathew ◽  
S. A. Ewing

American canine hepatozoonosis is caused by Hepatozoon americanum, a protozoan parasite, the definitive host of which is the tick, Amblyomma maculatum. Infection of the dog follows ingestion of ticks that harbor sporulated H. americanum oocysts. Following penetration of the intestinal mucosa, sporozoites are disseminated systemically and give rise to extensive asexual multiplication in cells located predominantly in striated muscle. The parasitized canine cells in “onion skin” cysts and in granulomas situated within skeletal muscle, as well as those in peripheral blood leukocytes (PBL), were identified as macrophages by use of fine structure morphology and/or immunohistochemical reactivity with macrophage markers. Additionally, two basic morphologic forms of the parasite were observed in macrophages of granulomas and PBLs. The forms were presumptively identified as merozoites and gamonts. The presence of a “tail” in some gamonts in PBLs indicated differentiation toward microgametes. Recognition of merozoites in PBLs supports the contention that hematogenously redistributed merozoites initiate repeated asexual cycles and could explain persistence of infection for long periods in the vertebrate host. Failure to clearly demonstrate a host cell membrane defining a parasitophorous vacuole may indicate that the parasite actively penetrates the host cell membrane rather than being engulfed by the host cell, as is characteristic of some protozoans.


1995 ◽  
Vol 108 (6) ◽  
pp. 2457-2464 ◽  
Author(s):  
J.H. Morisaki ◽  
J.E. Heuser ◽  
L.D. Sibley

Toxoplasma gondii is an obligate intracellular parasite that infects a wide variety of vertebrate cells including macrophages. We have used a combination of video microscopy and fluorescence localization to examine the entry of Toxoplasma into macrophages and nonphagocytic host cells. Toxoplasma actively invaded host cells without inducing host cell membrane ruffling, actin microfilament reorganization, or tyrosine phosphorylation of host proteins. Invasion occurred rapidly and within 25–40 seconds the parasite penetrated into a tight-fitting vacuole formed by invagination of the plasma membrane. In contrast, during phagocytosis of Toxoplasma, extensive membrane ruffling captured the parasite in a loose-fitting phagosome that formed over a period of 2–4 minutes. Phagocytosis involved both reorganization of the host cytoskeleton and tyrosine phosphorylation of host proteins. In some cases, parasites that were first internalized by phagocytosis, were able to escape from the phagosome by a process analogous to invasion. These studies reveal that active penetration of the host cell by Toxoplasma is fundamentally different from phagocytosis or induced endocytic uptake. The novel ability to penetrate the host cell likely contributes to the capability of Toxoplasma-containing vacuoles to avoid endocytic processing.


1997 ◽  
Vol 110 (17) ◽  
pp. 2117-2128 ◽  
Author(s):  
A.P. Sinai ◽  
P. Webster ◽  
K.A. Joiner

The parasitophorous vacuole membrane (PVM) of the obligate intracellular protozoan parasite Toxoplasma gondii forms tight associations with host mitochondria and the endoplasmic reticulum (ER). We have used a combination of morphometric and biochemical approaches to characterize this unique phenomenon, which we term PVM-organelle association. The PVM is separated from associated mitochondria and ER by a mean distance of 12 and 18 nm, respectively. The establishment of PVM-organelle association is dependent on active parasite entry, but does not require parasite viability for its maintenance. Association is not a consequence of spatial constraints imposed on the growing vacuole. Morphometric analysis indicates that the extent of mitochondrial association with the PVM stays constant as the vacuole enlarges, whereas the extent of ER association decreases. Disruption of host cell microtubules partially blocks the establishment but not the maintenance of PVM-mitochondrial association, and has no significant effect on PVM-ER association. PVM-organelle association is maintained following disruption of infected host cells, as assessed by electron microscopy and by sub-cellular fractionation showing co-migration of fixed PVM and organelle markers. Taken together, the data suggest that a high affinity, potentially protein-protein interaction between parasite and organelle components is responsible for PVM-organelle association.


Parasitology ◽  
2014 ◽  
Vol 141 (11) ◽  
pp. 1436-1454 ◽  
Author(s):  
RITA CARDOSO ◽  
SOFIA NOLASCO ◽  
JOÃO GONÇALVES ◽  
HELDER C. CORTES ◽  
ALEXANDRE LEITÃO ◽  
...  

SUMMARYBesnoitia besnoiti and Toxoplasma gondii are two closely related parasites that interact with the host cell microtubule cytoskeleton during host cell invasion. Here we studied the relationship between the ability of these parasites to invade and to recruit the host cell centrosome and the Golgi apparatus. We observed that T. gondii recruits the host cell centrosome towards the parasitophorous vacuole (PV), whereas B. besnoiti does not. Notably, both parasites recruit the host Golgi apparatus to the PV but its organization is affected in different ways. We also investigated the impact of depleting and over-expressing the host centrosomal protein TBCCD1, involved in centrosome positioning and Golgi apparatus integrity, on the ability of these parasites to invade and replicate. Toxoplasma gondii replication rate decreases in cells over-expressing TBCCD1 but not in TBCCD1-depleted cells; while for B. besnoiti no differences were found. However, B. besnoiti promotes a reorganization of the Golgi ribbon previously fragmented by TBCCD1 depletion. These results suggest that successful establishment of PVs in the host cell requires modulation of the Golgi apparatus which probably involves modifications in microtubule cytoskeleton organization and dynamics. These differences in how T. gondii and B. besnoiti interact with their host cells may indicate different evolutionary paths.


1992 ◽  
Vol 102 (3) ◽  
pp. 527-532 ◽  
Author(s):  
A.R. Dluzewski ◽  
G.H. Mitchell ◽  
P.R. Fryer ◽  
S. Griffiths ◽  
R.J. Wilson ◽  
...  

We have attempted to determine whether the parasitophorous vacuole membrane, in which the malaria parasite (merozoite) encapsulates itself when it enters a red blood cell, is derived from the host cell plasma membrane, as the appearance of the invasion process in the electron microscope has been taken to suggest, or from lipid material stored in the merozoite. We have incorporated into the red cell membrane a haptenic phospholipid, phosphatidylethanolamine, containing an NBD (N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)) group, substituted in the acyl chain, and allowed it to translocate into the inner bilayer leaflet. After invasion of these labelled cells by the parasite, Plasmodium falciparum, immuno-gold electron microscopy was used to follow the distribution of the labelled lipid; this was found to be overwhelmingly in favour of the host cell membrane relative to the parasitophorous vacuole. Merozoites of P. knowlesi were allowed to attach irreversibly to red cells without invasion, using the method of pretreatment with cytochalasin. The region of contact between the merozoite and the host cell membrane was in all cases devoid of the labelled phosphatidylethanolamine. These results lead us to infer that the parasitophorous vacuole membrane is derived wholly or partly from lipid preexisting in the merozoite.


mSphere ◽  
2020 ◽  
Vol 5 (6) ◽  
pp. e01001-20
Author(s):  
Paul-Christian Burda ◽  
Hugo Bisio ◽  
Jean-Baptiste Marq ◽  
Dominique Soldati-Favre ◽  
Volker T. Heussler

ABSTRACTToxoplasma gondii and members of the genus Plasmodium are obligate intracellular parasites that leave their infected host cell upon a tightly controlled process of egress. Intracellular replication of the parasites occurs within a parasitophorous vacuole, and its membrane as well as the host plasma membrane need to be disrupted during egress, leading to host cell lysis. While several parasite-derived factors governing egress have been identified, much less is known about host cell factors involved in this process. Previously, RNA interference (RNAi)-based knockdown and antibody-mediated depletion identified a host signaling cascade dependent on guanine nucleotide-binding protein subunit alpha q (GNAQ) to be required for the egress of Toxoplasma tachyzoites and Plasmodium blood stage merozoites. Here, we used CRISPR/Cas9 technology to generate HeLa cells deficient in GNAQ and tested their capacity to support the egress of T. gondii tachyzoites and Plasmodium berghei liver stage parasites. While we were able to confirm the importance of GNAQ for the egress of T. gondii, we found that the egress of P. berghei liver stages was unaffected in the absence of GNAQ. These results may reflect differences between the lytic egress process in apicomplexans and the formation of host cell-derived vesicles termed merosomes by P. berghei liver stages.IMPORTANCE The coordinated release of apicomplexan parasites from infected host cells prior to reinvasion is a critical process for parasite survival and the spread of infection. While Toxoplasma tachyzoites and Plasmodium blood stages induce a fast disruption of their surrounding membranes during their egress from host cells, Plasmodium liver stages keep the host cell membrane intact and leave their host cell in host cell-derived vesicles called merosomes. The knockout of GNAQ, a protein involved in G-protein-coupled receptor signaling, demonstrates the importance of this host factor for the lytic egress of T. gondii tachyzoites. Contrastingly, the egress of P. berghei is independent of GNAQ at the liver stage, indicating the existence of a mechanistically distinct strategy to exit the host cell.


1987 ◽  
Vol 88 (2) ◽  
pp. 231-239
Author(s):  
I. Kimata ◽  
K. Tanabe

Monoclonal antibodies against Toxoplasma gondii were prepared to characterize antigens of the parasite. Immunoperoxidase staining of parasites fixed with paraformaldehyde and glutaraldehyde (PFAGA) followed by Triton X-100 treatment showed that the antibody of clone I-63 recognized an antigen located in the anterior part of the parasite. When analysed by SDS-PAGE and immunoblotting, the antigen migrated in a 66 × 10(3) Mr region. The parasite antigen diminished greatly in parasites after invasion of host cells, but reappeared around a time when intracellular T. gondii multiplied. Immunodetection on PFAGA-fixed T. gondii-infected cells, whose membranes were permeabilized by freeze-thawing in the presence of 5% glycerol, demonstrated that, immediately after parasite invasion, the I-63 antibody-reactive antigen appeared to become associated with the parasitophorous vacuole (PV) membrane, that had been formed mainly by invagination of the host-cell plasma membrane so as to surround an invading parasite. The antigen remained associated with the PV membrane for some time, but disappeared later when the PV increased in size after the parasites had multiplied several times. These results were strengthened by immunoelectron microscopic observations: the antigen that had been localized at the anterior part of the parasite before invasion appeared in an area of the host cell cytoplasm around the tips of penetrating parasites and, thereafter, extended throughout the surface of the PV membrane when parasites completed invasion. Thus, it appears that the I-63-reactive antigen is secreted by T. gondii upon invasion of the host cell and becomes associated with the PV membrane shortly after invasion.


Sign in / Sign up

Export Citation Format

Share Document