scholarly journals Single-Cell RNA Sequencing of Batch Chlamydomonas Cultures Reveals Heterogeneity in their Diurnal Cycle Phase

Author(s):  
Feiyang Ma ◽  
Patrice A. Salomé ◽  
Sabeeha S. Merchant ◽  
Matteo Pellegrini

ABSTRACTThe photosynthetic unicellular alga Chlamydomonas (Chlamydomonas reinhardtii) is a versatile reference for algal biology because of the facility with which it can be cultured in the laboratory. Genomic and systems biology approaches have previously been used to describe how the transcriptome responds to environmental changes, but this analysis has been limited to bulk data, representing the average behavior from pools of cells. Here, we apply single-cell RNA sequencing (scRNA-seq) to probe the heterogeneity of Chlamydomonas cell populations under three environments and in two genotypes differing in the presence of a cell wall. First, we determined that RNA can be extracted from single algal cells with or without a cell wall, offering the possibility to sample algae communities in the wild. Second, scRNA-seq successfully separated single cells into non-overlapping cell clusters according to their growth conditions. Cells exposed to iron or nitrogen deficiency were easily distinguished despite a shared tendency to arrest cell division to economize resources. Notably, these groups of cells recapitulated known patterns observed with bulk RNA-seq, but also revealed their inherent heterogeneity. A substantial source of variation between cells originated from their endogenous diurnal phase, although cultures were grown in constant light. We exploited this result to show that circadian iron responses may be conserved from algae to land plants. We propose that bulk RNA-seq data represent an average of varied cell states that hides underappreciated heterogeneity.One-sentence summaryWe show that single-cell RNA-seq (scRNA-seq) can be applied to Chlamydomonas cultures to reveal the that heterogenity in bulk cultures is largely driven by diurnal cycle phasesThe author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantcell.org) is: Matteo Pellegrini ([email protected])

2021 ◽  
Author(s):  
Feiyang Ma ◽  
Patrice A Salomé ◽  
Sabeeha S Merchant ◽  
Matteo Pellegrini

Abstract The photosynthetic unicellular alga Chlamydomonas (Chlamydomonas reinhardtii) is a versatile reference for algal biology because of its ease of culture in the laboratory. Genomic and systems biology approaches have previously described transcriptome responses to environmental changes using bulk data, thus representing the average behavior from pools of cells. Here, we apply single-cell RNA sequencing (scRNA-seq) to probe the heterogeneity of Chlamydomonas cell populations under three environments and in two genotypes differing by the presence of a cell wall. First, we determined that RNA can be extracted from single algal cells with or without a cell wall, offering the possibility to sample natural algal communities. Second, scRNA-seq successfully separated single cells into non-overlapping cell clusters according to their growth conditions. Cells exposed to iron or nitrogen deficiency were easily distinguished despite a shared tendency to arrest photosynthesis and cell division to economize resources. Notably, these groups of cells recapitulated known patterns observed with bulk RNA-seq, but also revealed their inherent heterogeneity. A substantial source of variation between cells originated from their endogenous diurnal phase, although cultures were grown in constant light. We exploited this result to show that circadian iron responses may be conserved from algae to land plants. We document experimentally that bulk RNA-seq data represent an average of typically hidden heterogeneity in the population.


Kidney360 ◽  
2021 ◽  
pp. 10.34067/KID.0003682021
Author(s):  
Rachel M B Bell ◽  
Laura Denby

Kidney disease represents a global health burden of increasing prevalence and is an independent risk factor for cardiovascular disease. Myeloid cells are a major cellular compartment of the immune system; they are found in the healthy kidney and in increased numbers in the damaged and/or diseased kidney, where they act as key players in the progression of injury, inflammation and fibrosis. They possess enormous plasticity and heterogeneity, adopting different phenotypic and functional characteristics in response to stimuli in the local milieu. Though this inherent complexity remains to be fully understood in the kidney, advances in single-cell genomics promises to change this. Specifically, single-cell RNA sequencing (scRNA-seq) has had a transformative effect on kidney research, enabling the profiling and analysis of the transcriptomes of single cells at unprecedented resolution and throughput, and subsequent generation of cell atlases. Moving forward, combining scRNA- and single-nuclear RNA-seq with greater resolution spatial transcriptomics will allow spatial mapping of kidney disease of varying aetiology to further reveal the patterning of immune cells and non-immune renal cells. This review summarises the roles of myeloid cells in kidney health and disease, the experimental workflow in currently available scRNA-seq technologies and published findings using scRNA-seq in the context of myeloid cells and the kidney.


2017 ◽  
Author(s):  
Eduardo Torre ◽  
Hannah Dueck ◽  
Sydney Shaffer ◽  
Janko Gospocic ◽  
Rohit Gupte ◽  
...  

AbstractThe development of single cell RNA sequencing technologies has emerged as a powerful means of profiling the transcriptional behavior of single cells, leveraging the breadth of sequencing measurements to make inferences about cell type. However, there is still little understanding of how well these methods perform at measuring single cell variability for small sets of genes and what “transcriptome coverage” (e.g. genes detected per cell) is needed for accurate measurements. Here, we use single molecule RNA FISH measurements of 26 genes in thousands of melanoma cells to provide an independent reference dataset to assess the performance of the DropSeq and Fluidigm single cell RNA sequencing platforms. We quantified the Gini coefficient, a measure of rare-cell expression variability, and find that the correspondence between RNA FISH and single cell RNA sequencing for Gini, unlike for mean, increases markedly with per-cell library complexity up to a threshold of ∼2000 genes detected. A similar complexity threshold also allows for robust assignment of multi-genic cell states such as cell cycle phase. Our results provide guidelines for selecting sequencing depth and complexity thresholds for single cell RNA sequencing. More generally, our results suggest that if the number of genes whose expression levels are required to answer any given biological question is small, then greater transcriptome complexity per cell is likely more important than obtaining very large numbers of cells.


2017 ◽  
Author(s):  
Haejoon (Ellen) Kwon ◽  
Jean Fan ◽  
Peter Kharchenko

AbstractRecent developments in technological tools such as next generation sequencing along with peaking interest in the study of single cells has enabled single-cell RNA-sequencing, in which whole transcriptomes are analyzed on a single-cell level. Studies, however, have been hindered by the ability to effectively analyze these single cell RNA-seq datasets, due to the high-dimensional nature and intrinsic noise in the data. While many techniques have been introduced to reduce dimensionality of such data for visualization and subpopulation identification, the utility to identify new cellular subtypes in a reliable and robust manner remains unclear. Here, we compare dimensionality reduction visualization methods including principle component analysis and t-stochastic neighbor embedding along with various distance metric modifications to visualize single-cell RNA-seq datasets, and assess their performance in identifying known cellular subtypes. Our results suggest that selecting variable genes prior to analysis on single-cell RNA-seq data is vital to yield reliable classification, and that when variable genes are used, the choice of distance metric modification does not particularly influence the quality of classification. Still, in order to take advantage of all the gene expression information, alternative methods must be used for a reliable classification.


2020 ◽  
Author(s):  
Lin Li ◽  
Hao Dai ◽  
Zhaoyuan Fang ◽  
Luonan Chen

AbstractThe rapid advancement of single cell technologies has shed new light on the complex mechanisms of cellular heterogeneity. However, compared with bulk RNA sequencing (RNA-seq), single-cell RNA-seq (scRNA-seq) suffers from higher noise and lower coverage, which brings new computational difficulties. Based on statistical independence, cell-specific network (CSN) is able to quantify the overall associations between genes for each cell, yet suffering from a problem of overestimation related to indirect effects. To overcome this problem, we propose the “conditional cell-specific network” (CCSN) method, which can measure the direct associations between genes by eliminating the indirect associations. CCSN can be used for cell clustering and dimension reduction on a network basis of single cells. Intuitively, each CCSN can be viewed as the transformation from less “reliable” gene expression to more “reliable” gene-gene associations in a cell. Based on CCSN, we further design network flow entropy (NFE) to estimate the differentiation potency of a single cell. A number of scRNA-seq datasets were used to demonstrate the advantages of our approach: (1) one direct association network for one cell; (2) most existing scRNA-seq methods designed for gene expression matrices are also applicable to CCSN-transformed degree matrices; (3) CCSN-based NFE helps resolving the direction of differentiation trajectories by quantifying the potency of each cell. CCSN is publicly available at http://sysbio.sibcb.ac.cn/cb/chenlab/soft/CCSN.zip.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Sunny Z. Wu ◽  
Daniel L. Roden ◽  
Ghamdan Al-Eryani ◽  
Nenad Bartonicek ◽  
Kate Harvey ◽  
...  

Abstract Background High throughput single-cell RNA sequencing (scRNA-Seq) has emerged as a powerful tool for exploring cellular heterogeneity among complex human cancers. scRNA-Seq studies using fresh human surgical tissue are logistically difficult, preclude histopathological triage of samples, and limit the ability to perform batch processing. This hindrance can often introduce technical biases when integrating patient datasets and increase experimental costs. Although tissue preservation methods have been previously explored to address such issues, it is yet to be examined on complex human tissues, such as solid cancers and on high throughput scRNA-Seq platforms. Methods Using the Chromium 10X platform, we sequenced a total of ~ 120,000 cells from fresh and cryopreserved replicates across three primary breast cancers, two primary prostate cancers and a cutaneous melanoma. We performed detailed analyses between cells from each condition to assess the effects of cryopreservation on cellular heterogeneity, cell quality, clustering and the identification of gene ontologies. In addition, we performed single-cell immunophenotyping using CITE-Seq on a single breast cancer sample cryopreserved as solid tissue fragments. Results Tumour heterogeneity identified from fresh tissues was largely conserved in cryopreserved replicates. We show that sequencing of single cells prepared from cryopreserved tissue fragments or from cryopreserved cell suspensions is comparable to sequenced cells prepared from fresh tissue, with cryopreserved cell suspensions displaying higher correlations with fresh tissue in gene expression. We showed that cryopreservation had minimal impacts on the results of downstream analyses such as biological pathway enrichment. For some tumours, cryopreservation modestly increased cell stress signatures compared to freshly analysed tissue. Further, we demonstrate the advantage of cryopreserving whole-cells for detecting cell-surface proteins using CITE-Seq, which is impossible using other preservation methods such as single nuclei-sequencing. Conclusions We show that the viable cryopreservation of human cancers provides high-quality single-cells for multi-omics analysis. Our study guides new experimental designs for tissue biobanking for future clinical single-cell RNA sequencing studies.


2019 ◽  
Author(s):  
Imad Abugessaisa ◽  
Shuhei Noguchi ◽  
Melissa Cardon ◽  
Akira Hasegawa ◽  
Kazuhide Watanabe ◽  
...  

AbstractAnalysis and interpretation of single-cell RNA-sequencing (scRNA-seq) experiments are compromised by the presence of poor quality cells. For meaningful analyses, such poor quality cells should be excluded to avoid biases and large variation. However, no clear guidelines exist. We introduce SkewC, a novel quality-assessment method to identify poor quality single-cells in scRNA-seq experiments. The method is based on the assessment of gene coverage for each single cell and its skewness as a quality measure. To validate the method, we investigated the impact of poor quality cells on downstream analyses and compared biological differences between typical and poor quality cells. Moreover, we measured the ratio of intergenic expression, suggesting genomic contamination, and foreign organism contamination of single-cell samples. SkewC is tested in 37,993 single-cells generated by 15 scRNA-seq protocols. We envision SkewC as an indispensable QC method to be incorporated into scRNA-seq experiment to preclude the possibility of scRNA-seq data misinterpretation.


2016 ◽  
Author(s):  
Hannah R. Dueck ◽  
Rizi Ai ◽  
Adrian Camarena ◽  
Bo Ding ◽  
Reymundo Dominguez ◽  
...  

AbstractRecently, measurement of RNA at single cell resolution has yielded surprising insights. Methods for single-cell RNA sequencing (scRNA-seq) have received considerable attention, but the broad reliability of single cell methods and the factors governing their performance are still poorly known. Here, we conducted a large-scale control experiment to assess the transfer function of three scRNA-seq methods and factors modulating the function. All three methods detected greater than 70% of the expected number of genes and had a 50% probability of detecting genes with abundance greater than 2 to 4 molecules. Despite the small number of molecules, sequencing depth significantly affected gene detection. While biases in detection and quantification were qualitatively similar across methods, the degree of bias differed, consistent with differences in molecular protocol. Measurement reliability increased with expression level for all methods and we conservatively estimate the measurement transfer functions to be linear above ~5-10 molecules. Based on these extensive control studies, we propose that RNA-seq of single cells has come of age, yielding quantitative biological information.


2021 ◽  
Author(s):  
Nicole C. Rondeau ◽  
JJ L. Miranda

We detected precise coordination of RNA levels between two latent genes of the Kaposi sarcoma-associated herpesvirus (KSHV) using single-cell RNA sequencing. LANA and vIL6 are expressed during latency by different promoters on remote regions of the episome.…


Genes ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 240 ◽  
Author(s):  
Prashant N. M. ◽  
Hongyu Liu ◽  
Pavlos Bousounis ◽  
Liam Spurr ◽  
Nawaf Alomran ◽  
...  

With the recent advances in single-cell RNA-sequencing (scRNA-seq) technologies, the estimation of allele expression from single cells is becoming increasingly reliable. Allele expression is both quantitative and dynamic and is an essential component of the genomic interactome. Here, we systematically estimate the allele expression from heterozygous single nucleotide variant (SNV) loci using scRNA-seq data generated on the 10×Genomics Chromium platform. We analyzed 26,640 human adipose-derived mesenchymal stem cells (from three healthy donors), sequenced to an average of 150K sequencing reads per cell (more than 4 billion scRNA-seq reads in total). High-quality SNV calls assessed in our study contained approximately 15% exonic and >50% intronic loci. To analyze the allele expression, we estimated the expressed variant allele fraction (VAFRNA) from SNV-aware alignments and analyzed its variance and distribution (mono- and bi-allelic) at different minimum sequencing read thresholds. Our analysis shows that when assessing positions covered by a minimum of three unique sequencing reads, over 50% of the heterozygous SNVs show bi-allelic expression, while at a threshold of 10 reads, nearly 90% of the SNVs are bi-allelic. In addition, our analysis demonstrates the feasibility of scVAFRNA estimation from current scRNA-seq datasets and shows that the 3′-based library generation protocol of 10×Genomics scRNA-seq data can be informative in SNV-based studies, including analyses of transcriptional kinetics.


Sign in / Sign up

Export Citation Format

Share Document