scholarly journals Multimodal mechanosensing enables treefrog embryos to escape egg-predators

2020 ◽  
Author(s):  
Julie Jung ◽  
Shirley J. Serrano-Rojas ◽  
Karen M. Warkentin

ABSTRACTMechanosensory-cued hatching (MCH) is widespread, diverse, and improves survival in many animals. From flatworms and insects to frogs and turtles, embryos use mechanosensory cues and signals to inform hatching timing, yet mechanisms mediating mechanosensing in ovo are largely unknown. The arboreal embryos of red-eyed treefrogs, Agalychnis callidryas, hatch prematurely to escape predation, cued by physical disturbance in snake attacks. When otoconial organs in the developing vestibular system become functional, this response strengthens, but its earlier occurrence indicates another sensor must contribute. Post-hatching, tadpoles use lateral line neuromasts to detect water motion. We ablated neuromast function with gentamicin to assess their role in A. callidryas’ hatching response to disturbance. Prior to vestibular function, this nearly eliminated the hatching response to a complex simulated attack cue, egg-jiggling, revealing that neuromasts mediate early MCH. Vestibular function onset increased hatching, independent of neuromast function, indicating young embryos use multiple mechanosensory systems. MCH increased developmentally. All older embryos hatched in response to egg-jiggling, but neuromast function reduced response latency. In contrast, neuromast ablation had no effect on timing or level of hatching in motion-only vibration playbacks. It appears only a subset of egg-disturbance cues stimulate neuromasts; thus embryos in attacked clutches may receive uni- or multimodal stimuli. A. callidryas embryos have more neuromasts than described for any other species at hatching, suggesting precocious sensory development may facilitate MCH. Our findings provide insight into the behavioral roles of two mechanosensory systems in ovo and open possibilities for exploring sensory perception across taxa in early life stages.SUMMARYRed-eyed treefrog embryos use both their lateral line and vestibular systems to sense the disturbance cues in egg-predator attacks that inform escape-hatching decisions.

2020 ◽  
Vol 223 (24) ◽  
pp. jeb236141
Author(s):  
Julie Jung ◽  
Shirley J. Serrano-Rojas ◽  
Karen M. Warkentin

ABSTRACTMechanosensory-cued hatching (MCH) is widespread, diverse and important for survival in many animals. From flatworms and insects to frogs and turtles, embryos use mechanosensory cues and signals to inform hatching timing, yet mechanisms mediating mechanosensing in ovo are largely unknown. The arboreal embryos of red-eyed treefrogs, Agalychnis callidryas, hatch prematurely to escape predation, cued by physical disturbance in snake attacks. When otoconial organs in the developing vestibular system become functional, this response strengthens, but its earlier occurrence indicates another sensor must contribute. Post-hatching, tadpoles use lateral line neuromasts to detect water motion. We ablated neuromast function with gentamicin to assess their role in A. callidryas’ hatching response to disturbance. Prior to vestibular function, this nearly eliminated the hatching response to a complex simulated attack cue, egg jiggling, revealing that neuromasts mediate early MCH. Vestibular function onset increased hatching, independent of neuromast function, indicating young embryos use multiple mechanosensory systems. MCH increased developmentally. All older embryos hatched in response to egg jiggling, but neuromast function reduced response latency. In contrast, neuromast ablation had no effect on the timing or level of hatching in motion-only vibration playbacks. It appears only a subset of egg-disturbance cues stimulate neuromasts; thus, embryos in attacked clutches may receive unimodal or multimodal stimuli. Agalychnis callidryas embryos have more neuromasts than described for any other species at hatching, suggesting precocious sensory development may facilitate MCH. Our findings provide insight into the behavioral roles of two mechanosensory systems in ovo and open possibilities for exploring sensory perception across taxa in early life stages.


2019 ◽  
Author(s):  
Julie Jung ◽  
Su J. Kim ◽  
Sonia M. Pérez Arias ◽  
James G. McDaniel ◽  
Karen M. Warkentin

ABSTRACTThe widespread ability to alter hatching timing in response to environmental cues can serve as a defense against threats to eggs. Arboreal embryos of red-eyed treefrogs, Agalychnis callidryas, hatch up to 30% prematurely to escape predation. This escape-hatching response is cued by physical disturbance of eggs during attacks, including vibrations or motion, and thus depends critically on mechanosensory ability. Predator-induced hatching appears later in development than flooding-induced, hypoxia-cued hatching; thus, its onset is not constrained by the development of hatching ability. It may, instead, reflect the development of mechanosensor function. We hypothesize that vestibular mechanoreception mediates escape-hatching in snake attacks, and that the developmental period when hatching-competent embryos fail to flee from snakes reflects a sensory constraint. We assessed the ontogenetic congruence of escape-hatching responses and an indicator of vestibular function, the vestibulo-ocular reflex (VOR), in three ways. First, we measured VOR in two developmental series of embryos 3–7 days old to compare with the published ontogeny of escape success in attacks. Second, during the period of greatest variation in VOR and escape success, we compared hatching responses and VOR across sibships. Finally, in developmental series, we compared the response of individual embryos to a simulated attack cue with their VOR. The onset of VOR and hatching responses were largely concurrent at all three scales. Moreover, latency to hatch in simulated attacks decreased with increasing VOR. These results are consistent with a key role of the vestibular system in the escape-hatching response of A. callidryas embryos to attacks.Red-eyed treefrogs’ hatching responses to predator attacks, vibration playbacks, and egg-jiggling appear when vestibular function develops. Ear development may be a key limiting factor in the onset of mechanosensory-cued hatching.


2014 ◽  
Vol 152 ◽  
pp. 318-323 ◽  
Author(s):  
Paul L. McNeil ◽  
David Boyle ◽  
Theodore B. Henry ◽  
Richard D. Handy ◽  
Katherine A. Sloman

2015 ◽  
Vol 99 (1) ◽  
pp. 105-115 ◽  
Author(s):  
Alain Pasquet ◽  
Anthony Sebastian ◽  
Marie Laure Begout ◽  
Yannick LeDore ◽  
Fabrice Teletchea ◽  
...  

2019 ◽  
Vol 617-618 ◽  
pp. 67-79 ◽  
Author(s):  
GF de Carvalho-Souza ◽  
E González-Ortegón ◽  
F Baldó ◽  
C Vilas ◽  
P Drake ◽  
...  

2020 ◽  
Vol 3 (1) ◽  
pp. ACCEPTED
Author(s):  
Rho-Jeong Rae

This study investigated the boreal digging frog, Kaloula borealis, to determine the egg hatching period and whether the hatching period is affected by incubation temperature. The results of this study showed that all the eggs hatched within 48 h after spawning, with 28.1% (±10.8, n=52) hatching within 24 h and 99.9% (±0.23, n=49) within 48 h after spawning. A significant difference was noted in the mean hatching proportion of tadpoles at different water temperatures. The mean hatching rates between 15 and 24 h after spawning was higher at a water temperature of 21.1 (±0.2) °C than at 24.1 (±0.2) °C. These results suggest that incubation temperature affected the early life stages of the boreal digging frog, since they spawn in ponds or puddles that form during the rainy season.


2019 ◽  
Vol 73 (1) ◽  
pp. 163 ◽  
Author(s):  
Sergio A. Carrasco ◽  
Erika Meerhoff ◽  
Beatriz Yannicelly ◽  
Christian M. Ibáñez

Sign in / Sign up

Export Citation Format

Share Document