scholarly journals An Interpreted Atlas of Biosynthetic Gene Clusters from 1000 Fungal Genomes

2020 ◽  
Author(s):  
Matthew T. Robey ◽  
Lindsay K. Caesar ◽  
Milton T. Drott ◽  
Nancy P. Keller ◽  
Neil L. Kelleher

AbstractFungi are prolific producers of natural products, compounds which have had a large societal impact as pharmaceuticals, mycotoxins, and agrochemicals. Despite the availability of over 1000 fungal genomes and several decades of compound discovery efforts from fungi, the biosynthetic gene clusters (BGCs) encoded by these genomes and the associated chemical space have yet to be analyzed systematically. Here we provide detailed annotation and analyses of fungal biosynthetic and chemical space to enable genome mining and discovery of fungal natural products. Using 1037 genomes from species across the fungal kingdom (e.g., Ascomycota, Basidiomycota, and non-Dikarya taxa), 36,399 predicted BGCs were organized into a network of 12,067 gene cluster families (GCFs). Anchoring these GCFs with reference BGCs enabled automated annotation of 2,026 BGCs with predicted metabolite scaffolds. We performed parallel analyses of the chemical repertoire of Fungi, organizing 15,213 fungal compounds into 2,945 molecular families (MFs). The taxonomic landscape of fungal GCFs is largely species-specific, though select families such as the equisetin GCF are present across vast phylogenetic distances with parallel diversifications in the GCF and MF. We compare these fungal datasets with a set of 5,453 bacterial genomes and their BGCs and 9,382 bacterial compounds, revealing dramatic differences between bacterial and fungal biosynthetic logic and chemical space. These genomics and cheminformatics analyses reveal the large extent to which fungal and bacterial sources represent distinct compound reservoirs. With a >10-fold increase in the number of interpreted strains and annotated BGCs, this work better regularizes the biosynthetic potential of fungi for rational compound discovery.Significance StatementFungi represent an underexploited resource for new compounds with applications in the pharmaceutical and agriscience industries. Despite the availability of >1000 fungal genomes, our knowledge of the biosynthetic space encoded by these genomes is limited and ad hoc. We present results from systematically organizing the biosynthetic content of 1037 fungal genomes, providing a resource for data-driven genome mining and large-scale comparison of the genetic and molecular repertoires produced in fungi and compare to those present in bacteria.

2021 ◽  
Vol 118 (19) ◽  
pp. e2020230118
Author(s):  
Matthew T. Robey ◽  
Lindsay K. Caesar ◽  
Milton T. Drott ◽  
Nancy P. Keller ◽  
Neil L. Kelleher

Fungi are prolific producers of natural products, compounds which have had a large societal impact as pharmaceuticals, mycotoxins, and agrochemicals. Despite the availability of over 1,000 fungal genomes and several decades of compound discovery efforts from fungi, the biosynthetic gene clusters (BGCs) encoded by these genomes and the associated chemical space have yet to be analyzed systematically. Here, we provide detailed annotation and analyses of fungal biosynthetic and chemical space to enable genome mining and discovery of fungal natural products. Using 1,037 genomes from species across the fungal kingdom (e.g., Ascomycota, Basidiomycota, and non-Dikarya taxa), 36,399 predicted BGCs were organized into a network of 12,067 gene cluster families (GCFs). Anchoring these GCFs with reference BGCs enabled automated annotation of 2,026 BGCs with predicted metabolite scaffolds. We performed parallel analyses of the chemical repertoire of fungi, organizing 15,213 fungal compounds into 2,945 molecular families (MFs). The taxonomic landscape of fungal GCFs is largely species specific, though select families such as the equisetin GCF are present across vast phylogenetic distances with parallel diversifications in the GCF and MF. We compare these fungal datasets with a set of 5,453 bacterial genomes and their BGCs and 9,382 bacterial compounds, revealing dramatic differences between bacterial and fungal biosynthetic logic and chemical space. These genomics and cheminformatics analyses reveal the large extent to which fungal and bacterial sources represent distinct compound reservoirs. With a >10-fold increase in the number of interpreted strains and annotated BGCs, this work better regularizes the biosynthetic potential of fungi for rational compound discovery.


2015 ◽  
Author(s):  
Pablo Cruz-Morales ◽  
Christian E. Martínez-Guerrero ◽  
Marco A. Morales-Escalante ◽  
Luis Yáñez-Guerra ◽  
Johannes Florian Kopp ◽  
...  

AbstractNatural products have provided humans with antibiotics for millennia. However, a decline in the pace of chemical discovery exerts pressure on human health as antibiotic resistance spreads. The empirical nature of current genome mining approaches used for natural products research limits the chemical space that is explored. By integration of evolutionary concepts related to emergence of metabolism, we have gained fundamental insights that are translated into an alternative genome mining approach, termed EvoMining. As the founding assumption of EvoMining is the evolution of enzymes, we solved two milestone problems revealing unprecedented conversions. First, we report the biosynthetic gene cluster of the ‘orphan’ metabolite leupeptin in Streptomyces roseus. Second, we discover an enzyme involved in formation of an arsenic-carbon bond in Streptomyces coelicolor and Streptomyces lividans. This work provides evidence that bacterial chemical repertoire is underexploited, as well as an approach to accelerate the discovery of novel antibiotics from bacterial genomes.


Author(s):  
Patrick Videau ◽  
Kaitlyn Wells ◽  
Arun Singh ◽  
Jessie Eiting ◽  
Philip Proteau ◽  
...  

Cyanobacteria are prolific producers of natural products and genome mining has shown that many orphan biosynthetic gene clusters can be found in sequenced cyanobacterial genomes. New tools and methodologies are required to investigate these biosynthetic gene clusters and here we present the use of <i>Anabaena </i>sp. strain PCC 7120 as a host for combinatorial biosynthesis of natural products using the indolactam natural products (lyngbyatoxin A, pendolmycin, and teleocidin B-4) as a test case. We were able to successfully produce all three compounds using codon optimized genes from Actinobacteria. We also introduce a new plasmid backbone based on the native <i>Anabaena</i>7120 plasmid pCC7120ζ and show that production of teleocidin B-4 can be accomplished using a two-plasmid system, which can be introduced by co-conjugation.


Author(s):  
Subhasish Saha ◽  
Germana Esposito ◽  
Petra Urajova ◽  
Jan Mareš ◽  
Daniela Ewe ◽  
...  

Heterocytous cyanobacteria are among the most prolific source of bioactive secondary metabolites, including anabaenopeptins (APTs). A terrestrial filamentous Brasilonema sp. CT11 collected in Costa Rica bamboo forest, as black mat was studied using a multidisciplinary approach: genome mining and HPLC-HRMS/MS coupled with bionformatic analyses. Herein, we report the nearly complete genome consisting 8.79 Mbp with a GC content of 42.4%. Moreover, we report on three novel tryptophane-containing APTs; anabaenopeptin 788 (1), anabaenopeptin 802 (2) and anabaenopeptin 816 (3). Further, the structure of two homologues, i.e., anabaenopeptin 802 (2a) and anabaenopeptin 802 (2b) was determined by spectroscopic analysis (NMR and MS). Both compounds were shown to exert weak to moderate antiproliferative activity against HeLa cell lines. This study also provides the unique and diverse potential of biosynthetic gene clusters and an assessment of the predicted chemical space yet to be discovered from this genus.


2020 ◽  
Vol 49 (D1) ◽  
pp. D639-D643 ◽  
Author(s):  
Kai Blin ◽  
Simon Shaw ◽  
Satria A Kautsar ◽  
Marnix H Medema ◽  
Tilmann Weber

Abstract Microorganisms produce natural products that are frequently used in the development of antibacterial, antiviral, and anticancer drugs, pesticides, herbicides, or fungicides. In recent years, genome mining has evolved into a prominent method to access this potential. antiSMASH is one of the most popular tools for this task. Here, we present version 3 of the antiSMASH database, providing a means to access and query precomputed antiSMASH-5.2-detected biosynthetic gene clusters from representative, publicly available, high-quality microbial genomes via an interactive graphical user interface. In version 3, the database contains 147 517 high quality BGC regions from 388 archaeal, 25 236 bacterial and 177 fungal genomes and is available at https://antismash-db.secondarymetabolites.org/.


2017 ◽  
Vol 20 (4) ◽  
pp. 1103-1113 ◽  
Author(s):  
Kai Blin ◽  
Hyun Uk Kim ◽  
Marnix H Medema ◽  
Tilmann Weber

Abstract Many drugs are derived from small molecules produced by microorganisms and plants, so-called natural products. Natural products have diverse chemical structures, but the biosynthetic pathways producing those compounds are often organized as biosynthetic gene clusters (BGCs) and follow a highly conserved biosynthetic logic. This allows for the identification of core biosynthetic enzymes using genome mining strategies that are based on the sequence similarity of the involved enzymes/genes. However, mining for a variety of BGCs quickly approaches a complexity level where manual analyses are no longer possible and require the use of automated genome mining pipelines, such as the antiSMASH software. In this review, we discuss the principles underlying the predictions of antiSMASH and other tools and provide practical advice for their application. Furthermore, we discuss important caveats such as rule-based BGC detection, sequence and annotation quality and cluster boundary prediction, which all have to be considered while planning for, performing and analyzing the results of genome mining studies.


2018 ◽  
Vol 16 (10) ◽  
pp. 1620-1626 ◽  
Author(s):  
Cameron L. M. Gilchrist ◽  
Hang Li ◽  
Yit-Heng Chooi

A perspective on existing and emerging strategies for the prioritisation of secondary metabolite biosynthetic gene clusters (BGCs) to increase the odds of fruitful mining of fungal genomes.


Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3786 ◽  
Author(s):  
Subhasish Saha ◽  
Germana Esposito ◽  
Petra Urajová ◽  
Jan Mareš ◽  
Daniela Ewe ◽  
...  

Heterocytous cyanobacteria are among the most prolific sources of bioactive secondary metabolites, including anabaenopeptins (APTs). A terrestrial filamentous Brasilonema sp. CT11 collected in Costa Rica bamboo forest as a black mat, was studied using a multidisciplinary approach: genome mining and HPLC-HRMS/MS coupled with bioinformatic analyses. Herein, we report the nearly complete genome consisting of 8.79 Mbp with a GC content of 42.4%. Moreover, we report on three novel tryptophan-containing APTs; anabaenopeptin 788 (1), anabaenopeptin 802 (2), and anabaenopeptin 816 (3). Furthermore, the structure of two homologues, i.e., anabaenopeptin 802 (2a) and anabaenopeptin 802 (2b), was determined by spectroscopic analysis (NMR and MS). Both compounds were shown to exert weak to moderate antiproliferative activity against HeLa cell lines. This study also provides the unique and diverse potential of biosynthetic gene clusters and an assessment of the predicted chemical space yet to be discovered from this genus.


Biomolecules ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1027 ◽  
Author(s):  
Loïc Martinet ◽  
Aymeric Naômé ◽  
Dominique Baiwir ◽  
Edwin De Pauw ◽  
Gabriel Mazzucchelli ◽  
...  

Strain prioritization for drug discovery aims at excluding redundant strains of a collection in order to limit the repetitive identification of the same molecules. In this work, we wanted to estimate what can be unexploited in terms of the amount, diversity, and novelty of compounds if the search is focused on only one single representative strain of a species, taking Streptomyces lunaelactis as a model. For this purpose, we selected 18 S. lunaelactis strains taxonomically clustered with the archetype strain S. lunaelactis MM109T. Genome mining of all S. lunaelactis isolated from the same cave revealed that 54% of the 42 biosynthetic gene clusters (BGCs) are strain specific, and five BGCs are not present in the reference strain MM109T. In addition, even when a BGC is conserved in all strains such as the bag/fev cluster involved in bagremycin and ferroverdin production, the compounds produced highly differ between the strains and previously unreported compounds are not produced by the archetype MM109T. Moreover, metabolomic pattern analysis uncovered important profile heterogeneity, confirming that identical BGC predisposition between two strains does not automatically imply chemical uniformity. In conclusion, trying to avoid strain redundancy based on phylogeny and genome mining information alone can compromise the discovery of new natural products and might prevent the exploitation of the best naturally engineered producers of specific molecules.


Metabolites ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 785
Author(s):  
Junyang Wang ◽  
Jens Nielsen ◽  
Zihe Liu

A wide variety of bacteria, fungi and plants can produce bioactive secondary metabolites, which are often referred to as natural products. With the rapid development of DNA sequencing technology and bioinformatics, a large number of putative biosynthetic gene clusters have been reported. However, only a limited number of natural products have been discovered, as most biosynthetic gene clusters are not expressed or are expressed at extremely low levels under conventional laboratory conditions. With the rapid development of synthetic biology, advanced genome mining and engineering strategies have been reported and they provide new opportunities for discovery of natural products. This review discusses advances in recent years that can accelerate the design, build, test, and learn (DBTL) cycle of natural product discovery, and prospects trends and key challenges for future research directions.


Sign in / Sign up

Export Citation Format

Share Document