scholarly journals Social Network Analysis of the Genealogy of Strawberry: Retracing the Wild Roots of Heirloom and Modern Cultivars

2020 ◽  
Author(s):  
Dominique D.A. Pincot ◽  
Mirko Ledda ◽  
Mitchell J. Feldmann ◽  
Michael A. Hardigan ◽  
Thomas J. Poorten ◽  
...  

ABSTRACTThe widely recounted story of the origin of cultivated strawberry (Fragaria × ananassa) oversimplifies the complex interspecific hybrid ancestry of the highly admixed populations from which heirloom and modern cultivars have emerged. To develop deeper insights into the three century long domestication history of strawberry, we reconstructed the genealogy as deeply as possible—pedigree records were assembled for 8,851 individuals, including 2,656 cultivars developed since 1775. The parents of individuals with unverified or missing pedigree records were accurately identified by applying exclusion analysis to array-genotyped single nucleotide polymorphisms. We identified 187 wild octoploid and 1,171 F. × ananassa founders in the genealogy, from the earliest hybrids to modern cultivars. The pedigree networks for cultivated strawberry are exceedingly complex labyrinths of ancestral interconnections formed by diverse hybrid ancestry, directional selection, migration, admixture, bottlenecks, overlapping generations, and recurrent hybridization with common ancestors that have unequally contributed allelic diversity to heirloom and modern cultivars. Fifteen to 333 ancestors were predicted to have transmitted 90% of the alleles found in country-, region-, and continent-specific populations. Using parent-offspring edges in the global pedigree network, we found that selection cycle lengths over the last 200 years of breeding have been extraordinarily long (16.0-16.9 years/generation) but decreased to a present-day range of 6.0-10.0 years/generation. Our analyses uncovered conspicuous differences in the ancestry and structure of North American and European populations and shed light on forces that have shaped phenotypic diversity in F. × ananassa.

Author(s):  
Dominique D A Pincot ◽  
Mirko Ledda ◽  
Mitchell J Feldmann ◽  
Michael A Hardigan ◽  
Thomas J Poorten ◽  
...  

Abstract The widely recounted story of the origin of cultivated strawberry (Fragaria × ananassa) oversimplifies the complex interspecific hybrid ancestry of the highly admixed populations from which heirloom and modern cultivars have emerged. To develop deeper insights into the three century long domestication history of strawberry, we reconstructed the genealogy as deeply as possible—pedigree records were assembled for 8,851 individuals, including 2,656 cultivars developed since 1775. The parents of individuals with unverified or missing pedigree records were accurately identified by applying exclusion analysis to array-genotyped single nucleotide polymorphisms. We identified 187 wild octoploid and 1,171 F. × ananassa founders in the genealogy, from the earliest hybrids to modern cultivars. The pedigree networks for cultivated strawberry are exceedingly complex labyrinths of ancestral interconnections formed by diverse hybrid ancestry, directional selection, migration, admixture, bottlenecks, overlapping generations, and recurrent hybridization with common ancestors that have unequally contributed allelic diversity to heirloom and modern cultivars. Fifteen to 333 ancestors were predicted to have transmitted 90% of the alleles found in country-, region-, and continent-specific populations. Using parent-offspring edges in the global pedigree network, we found that selection cycle lengths over the last 200 years of breeding have been extraordinarily long (16.0-16.9 years/generation) but decreased to a present-day range of 6.0-10.0 years/generation. Our analyses uncovered conspicuous differences in the ancestry and structure of North American and European populations and shed light on forces that have shaped phenotypic diversity in F. × ananassa.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 808
Author(s):  
Laura Pérez-Lago ◽  
Teresa Aldámiz-Echevarría ◽  
Rita García-Martínez ◽  
Leire Pérez-Latorre ◽  
Marta Herranz ◽  
...  

A successful Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variant, B.1.1.7, has recently been reported in the UK, causing global alarm. Most likely, the new variant emerged in a persistently infected patient, justifying a special focus on these cases. Our aim in this study was to explore certain clinical profiles involving severe immunosuppression that may help explain the prolonged persistence of viable viruses. We present three severely immunosuppressed cases (A, B, and C) with a history of lymphoma and prolonged SARS-CoV-2 shedding (2, 4, and 6 months), two of whom finally died. Whole-genome sequencing of 9 and 10 specimens from Cases A and B revealed extensive within-patient acquisition of diversity, 12 and 28 new single nucleotide polymorphisms, respectively, which suggests ongoing SARS-CoV-2 replication. This diversity was not observed for Case C after analysing 5 sequential nasopharyngeal specimens and one plasma specimen, and was only observed in one bronchoaspirate specimen, although viral viability was still considered based on constant low Ct values throughout the disease and recovery of the virus in cell cultures. The acquired viral diversity in Cases A and B followed different dynamics. For Case A, new single nucleotide polymorphisms were quickly fixed (13–15 days) after emerging as minority variants, while for Case B, higher diversity was observed at a slower emergence: fixation pace (1–2 months). Slower SARS-CoV-2 evolutionary pace was observed for Case A following the administration of hyperimmune plasma. This work adds knowledge on SARS-CoV-2 prolonged shedding in severely immunocompromised patients and demonstrates viral viability, noteworthy acquired intra-patient diversity, and different SARS-CoV-2 evolutionary dynamics in persistent cases.


Author(s):  
Philippe Henry

In the present research, I used an open access data set (Medicinal Genomics) consisting of nearly 200'000 genome-wide single nucleotide polymorphisms (SNPs) typed in 28 cannabis accessions to shed light on the plant's underlying genetic structure. Genome-wide loadings were used to sequentially cull less informative markers. The process involved reducing the number of SNPs to 100K, 10K, 1K, 100 until I identified a set of 42 highly informative SNPs that I present here. The two first principal components, encompass over 3/4 of the genetic variation present in the dataset (PCA1 = 48.6%, PCA2= 26.3%). This set of diagnostic SNPs is then used to identify clusters into which cannabis accession segregate. I identified three clear and consistent clusters; reflective of the ancient domestication trilogy of the genus Cannabis.


2019 ◽  
Vol 125 (3) ◽  
pp. 495-507 ◽  
Author(s):  
Francisco Balao ◽  
María Teresa Lorenzo ◽  
José Manuel Sánchez-Robles ◽  
Ovidiu Paun ◽  
Juan Luis García-Castaño ◽  
...  

Abstract Background and Aims Inferring the evolutionary relationships of species and their boundaries is critical in order to understand patterns of diversification and their historical drivers. Despite Abies (Pinaceae) being the second most diverse group of conifers, the evolutionary history of Circum-Mediterranean firs (CMFs) remains under debate. Methods We used restriction site-associated DNA sequencing (RAD-seq) on all proposed CMF taxa to investigate their phylogenetic relationships and taxonomic status. Key Results Based on thousands of genome-wide single nucleotide polymorphisms (SNPs), we present here the first formal test of species delimitation, and the first fully resolved, complete species tree for CMFs. We discovered that all previously recognized taxa in the Mediterranean should be treated as independent species, with the exception of Abies tazaotana and Abies marocana. An unexpectedly early pulse of speciation in the Oligocene–Miocene boundary is here documented for the group, pre-dating previous hypotheses by millions of years, revealing a complex evolutionary history encompassing both ancient and recent gene flow between distant lineages. Conclusions Our phylogenomic results contribute to shed light on conifers’ diversification. Our efforts to resolve the CMF phylogenetic relationships help refine their taxonomy and our knowledge of their evolution.


2018 ◽  
Vol 78 (09) ◽  
pp. 866-870 ◽  
Author(s):  
Marlena Fejzo ◽  
Daria Arzy ◽  
Rayna Tian ◽  
Kimber MacGibbon ◽  
Patrick Mullin

Abstract Introduction Hyperemesis gravidarum (HG), a pregnancy complication characterized by severe nausea and vomiting in pregnancy, occurs in up to 2% of pregnancies. It is associated with both maternal and fetal morbidity. HG is highly heritable and recurs in approximately 80% of women. In a recent genome-wide association study, it was shown that placentation, appetite, and the cachexia gene GDF15 are linked to HG. The purpose of this study was to explore whether GDF15 alleles linked to overexpression of GDF15 protein segregate with the condition in families, and whether the GDF15 risk allele is associated with recurrence of HG. Methods We analyzed GDF15 overexpression alleles for segregation with disease using exome-sequencing data from 5 HG families. We compared the allele frequency of the GDF15 risk allele, rs16982345, in patients who had recurrence of HG with its frequency in those who did not have recurrence. Results Single nucleotide polymorphisms (SNPs) linked to higher levels of GDF15 segregated with disease in HG families. The GDF15 risk allele, rs16982345, was associated with an 8-fold higher risk of recurrence of HG. Conclusion The findings of this study support the hypothesis that GDF15 is involved in the pathogenesis of both familial and recurrent cases of HG. The findings may be applicable when counseling women with a familial history of HG or recurrent HG. The GDF15-GFRAL brainstem-activated pathway was recently identified and therapies to treat conditions of abnormal appetite are under development. Based on our findings, patients carrying GDF15 variants associated with GDF15 overexpression should be included in future studies of GDF15-GFRAL-based therapeutics. If safe, this approach could reduce maternal and fetal morbidity.


2010 ◽  
Vol 70 (3) ◽  
pp. 512-515 ◽  
Author(s):  
Yuta Kochi ◽  
Mohamed M Thabet ◽  
Akari Suzuki ◽  
Yukinori Okada ◽  
Nina A Daha ◽  
...  

ObjectiveTo elucidate the differential role of peptidyl arginine deiminase 4 (PADI4) polymorphism in rheumatoid arthritis (RA) between Asian and European populations, possible gene–environmental interactions among the PADI4 polymorphism, sex and smoking status were analysed.MethodsThree independent sets of case–control samples were genotyped for single-nucleotide polymorphisms in PADI4; Japanese samples (first set, 1019 RA patients, 907 controls; second set, 999 RA patients, 1128 controls) using TaqMan assays and Dutch samples (635 RA patients, 391 controls) using Sequenom MassARRAY platform. The association of PADI4 with RA susceptibility was evaluated by smoking status and sex in contingency tables and logistic regression models.ResultsIn the first set of Japanese samples, PADI4 polymorphism (rs1748033) showed a greater risk in men (ORallele 1.39; 95% CI 1.10 to 1.76; ptrend=0.0054) than in women and in ever-smokers (ORallele 1.25; 95% CI 1.02 to 1.53; ptrend=0.032) than in never-smokers. Moreover, the highest risk was seen in male ever-smokers (ORallele 1.46; 95% CI 1.12 to 1.90; ptrend=0.0047). Similar trends were observed in the second set of Japanese samples as well as in Dutch samples.ConclusionPADI4 polymorphism highly predisposes male smokers to RA, and the genetic heterogeneity observed between Asian and European populations may be partly explained by differences in smoking prevalence among men.


2012 ◽  
Vol 28 (10) ◽  
pp. 1262-1264 ◽  
Author(s):  
Luz Martín-Carbonero ◽  
Norma I. Rallón ◽  
José M. Benito ◽  
Eva Poveda ◽  
Juan González-Lahoz ◽  
...  

2017 ◽  
Author(s):  
Emily S Wong ◽  
Steve Chenoweth ◽  
Mark Blows ◽  
Joseph E Powell

AbstractHow genetic variation contributes to phenotypic variation is a central question in genetics. Association signals for a complex trait are found throughout the majority of the genome suggesting much of the genome is under some degree of genetic constraint. Here, we develop a intraspecific population genetics approach to define a measure of population structure for each single nucleotide polymorphism (SNP). Using this approach, we test for evidence of stabilizing selection at complex traits and pleiotropic loci arising from the evolutionary history of 47 complex traits and common diseases. Our approach allowed us to identify traits and regions under stabilizing selection towards both global and subpopulation optima. Strongest depletion of allelic diversity was found at disease loci, indicating stabilizing selection has acted on these phenotypes in all subpopulations. Pleiotropic loci predominantly displayed evidence of stabilizing selection, often contributed to multiple disease risks, and sometimes also affected non-disease traits such as height. Risk alleles at pleiotropic disease loci displayed a more consistent direction of effect than expected by chance suggesting that stabilizing selection acting on pleiotropic loci is amplified through multiple disease phenotypes.


Sign in / Sign up

Export Citation Format

Share Document