scholarly journals The transcription factor BCL11A defines a distinctive subset of dopamine neurons in the developing and adult midbrain

2020 ◽  
Author(s):  
Marianna Tolve ◽  
Ayse Ulusoy ◽  
Khondker Ushna Sameen Islam ◽  
Gabriela O. Bodea ◽  
Ece Öztürk ◽  
...  

AbstractMidbrain dopaminergic (mDA) neurons are diverse in their projection targets, impact on behavior and susceptibility to neurodegeneration. Little is known about the molecular mechanisms that establish this diversity in mDA neurons during development. We find that the transcription factor Bcl11a defines a subset of mDA neurons in the developing and adult murine brain. By combining intersectional labeling and viral-mediated tracing we show that Bcl11a-expressing mDA neurons form a highly specific subcircuit within the dopaminergic system. We demonstrate that Bcl11a-expressing mDA neurons in the substantia nigra (SN) are particularly vulnerable to neurodegeneration in an α-synuclein overexpression model of Parkinson’s disease. Inactivation of Bcl11a in developing mDA neurons results in anatomical changes, deficits in motor learning and a dramatic increase in the susceptibility to α-synuclein-induced degeneration in SN-mDA neurons. In summary, we identify an mDA subpopulation with highly distinctive characteristics defined by the expression of the transcription factor Bcl11a already during development.

2020 ◽  
Author(s):  
Sejal Patel ◽  
Derek Howard ◽  
Leon French

BACKGROUND: Parkinson's disease (PD) causes severe motor and cognitive disabilities that result from the progressive loss of dopamine neurons in the substantia nigra. The rs12456492 variant in the RIT2 gene has been repeatedly associated with increased risk for Parkinson's disease. From a transcriptomic perspective, a meta-analysis found that RIT2 gene expression is correlated with pH in the human brain. OBJECTIVE: To assess pH associations at the RIT2-SYT4 locus. METHODS: Linear models to examine two datasets that assayed rs12456492, gene expression, and pH in the postmortem human brain. RESULTS: Using the BrainEAC dataset, we replicate the positive correlation between RIT2 gene expression and pH in the human brain. Furthermore, we found that the relationship between expression and pH is influenced by rs12456492. When tested across ten brain regions, this interaction is specifically found in the substantia nigra. A similar association was found for the co-localized SYT4 gene. In addition, SYT4 associations are stronger in a combined model with both genes, and the SYT4 interaction appears to be specific to males. In the GTEx dataset, the pH associations involving rs12456492 and expression of either SYT4 and RIT2 was not seen. This null finding may be due to the short postmortem intervals (PMI) of the GTEx tissue samples. In the BrainEAC data, we tested the effect of PMI and only observed the interactions in the longer PMI samples. CONCLUSIONS: These previously unknown associations suggest novel mechanistic roles for rs12456492, RIT2, and SYT4 in the regulation of pH in the substantia nigra.


2021 ◽  
Vol 15 ◽  
Author(s):  
Nolwazi Z. Gcwensa ◽  
Drèson L. Russell ◽  
Rita M. Cowell ◽  
Laura A. Volpicelli-Daley

Parkinson’s disease (PD) is a progressive neurodegenerative disease that impairs movement as well as causing multiple other symptoms such as autonomic dysfunction, rapid eye movement (REM) sleep behavior disorder, hyposmia, and cognitive changes. Loss of dopamine neurons in the substantia nigra pars compacta (SNc) and loss of dopamine terminals in the striatum contribute to characteristic motor features. Although therapies ease the symptoms of PD, there are no treatments to slow its progression. Accumulating evidence suggests that synaptic impairments and axonal degeneration precede neuronal cell body loss. Early synaptic changes may be a target to prevent disease onset and slow progression. Imaging of PD patients with radioligands, post-mortem pathologic studies in sporadic PD patients, and animal models of PD demonstrate abnormalities in presynaptic terminals as well as postsynaptic dendritic spines. Dopaminergic and excitatory synapses are substantially reduced in PD, and whether other neuronal subtypes show synaptic defects remains relatively unexplored. Genetic studies implicate several genes that play a role at the synapse, providing additional support for synaptic dysfunction in PD. In this review article we: (1) provide evidence for synaptic defects occurring in PD before neuron death; (2) describe the main genes implicated in PD that could contribute to synapse dysfunction; and (3) show correlations between the expression of Snca mRNA and mouse homologs of PD GWAS genes demonstrating selective enrichment of Snca and synaptic genes in dopaminergic, excitatory and cholinergic neurons. Altogether, these findings highlight the need for novel therapeutics targeting the synapse and suggest that future studies should explore the roles for PD-implicated genes across multiple neuron types and circuits.


Cells ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1966 ◽  
Author(s):  
Helena Xicoy ◽  
Jos F. Brouwers ◽  
Bé Wieringa ◽  
Gerard J. M. Martens

Parkinson’s disease (PD) is characterized by the loss of dopaminergic neurons from the substantia nigra (SN) that project to the dorsal striatum (caudate-putamen). To better understand the molecular mechanisms underlying PD, we performed combined lipid profiling and RNA sequencing of SN and putamen samples from PD patients and age-matched controls. SN lipid analysis pointed to a neuroinflammatory component and included elevated levels of the endosomal lipid Bis (Monoacylglycero)Phosphate 42:8, while two of the three depleted putamen lipids were saturated sphingomyelin species. Remarkably, we observed gender-related differences in the SN and putamen lipid profiles. Transcriptome analysis revealed that the top-enriched pathways among the 354 differentially expressed genes (DEGs) in the SN were “protein folding” and “neurotransmitter transport”, and among the 261 DEGs from putamen “synapse organization”. Furthermore, we identified pathways, e.g., “glutamate signaling”, and genes, encoding, e.g., an angiotensin receptor subtype or a proprotein convertase, that have not been previously linked to PD. The identification of 33 genes that were common among the SN and putamen DEGs, which included the α-synuclein paralog β-synuclein, may contribute to the understanding of general PD mechanisms. Thus, our proof-of-concept data highlights new genes, pathways and lipids that have not been explored before in the context of PD.


IBRO Reports ◽  
2019 ◽  
Vol 7 ◽  
pp. 25
Author(s):  
A.F. Ibraheem ◽  
I.A. Ogeleyinbo ◽  
K.O. Emmanuel ◽  
E.V. Idar ◽  
J.O. Oyewale ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Cheng Tan ◽  
Xiaoyang Liu ◽  
Jiajun Chen

Purpose. This study aimed to investigate the underlying molecular mechanisms of Parkinson’s disease (PD) by bioinformatics.Methods. Using the microarray dataset GSE72267 from the Gene Expression Omnibus database, which included 40 blood samples from PD patients and 19 matched controls, differentially expressed genes (DEGs) were identified after data preprocessing, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Protein-protein interaction (PPI) network, microRNA- (miRNA-) target regulatory network, and transcription factor- (TF-) target regulatory networks were constructed.Results. Of 819 DEGs obtained, 359 were upregulated and 460 were downregulated. Two GO terms, “rRNA processing” and “cytoplasm,” and two KEGG pathways, “metabolic pathways” and “TNF signaling pathway,” played roles in PD development. Intercellular adhesion molecule 1 (ICAM1) was the hub node in the PPI network; hsa-miR-7-5p, hsa-miR-433-3p, and hsa-miR-133b participated in PD pathogenesis. Six TFs, including zinc finger and BTB domain-containing 7A, ovo-like transcriptional repressor 1, GATA-binding protein 3, transcription factor dp-1, SMAD family member 1, and quiescin sulfhydryl oxidase 1, were related to PD.Conclusions. “rRNA processing,” “cytoplasm,” “metabolic pathways,” and “TNF signaling pathway” were key pathways involved in PD.ICAM1, hsa-miR-7-5p, hsa-miR-433-3p, hsa-miR-133b, and the abovementioned six TFs might play important roles in PD development.


Brain ◽  
2017 ◽  
Vol 140 (9) ◽  
pp. 2460-2474 ◽  
Author(s):  
Junchao Tong ◽  
Gausiha Rathitharan ◽  
Jeffrey H Meyer ◽  
Yoshiaki Furukawa ◽  
Lee-Cyn Ang ◽  
...  

Abstract See Jellinger (doi:10.1093/awx190) for a scientific commentary on this article.  The enzyme monoamine oxidases (B and A subtypes, encoded by MAOB and MAOA, respectively) are drug targets in the treatment of Parkinson’s disease. Inhibitors of MAOB are used clinically in Parkinson’s disease for symptomatic purposes whereas the potential disease-modifying effect of monoamine oxidase inhibitors is debated. As astroglial cells express high levels of MAOB, the enzyme has been proposed as a brain imaging marker of astrogliosis, a cellular process possibly involved in Parkinson’s disease pathogenesis as elevation of MAOB in astrocytes might be harmful. Since brain monoamine oxidase status in Parkinson’s disease is uncertain, our objective was to measure, by quantitative immunoblotting in autopsied brain homogenates, protein levels of both monoamine oxidases in three different degenerative parkinsonian disorders: Parkinson’s disease (n = 11), multiple system atrophy (n = 11), and progressive supranuclear palsy (n = 16) and in matched controls (n = 16). We hypothesized that if MAOB is ‘substantially’ localized to astroglial cells, MAOB levels should be generally associated with standard astroglial protein measures (e.g. glial fibrillary acidic protein). MAOB levels were increased in degenerating putamen (+83%) and substantia nigra (+10%, non-significant) in multiple system atrophy; in caudate (+26%), putamen (+27%), frontal cortex (+31%) and substantia nigra (+23%) of progressive supranuclear palsy; and in frontal cortex (+33%), but not in substantia nigra of Parkinson’s disease, a region we previously reported no increase in astrocyte protein markers. Although the magnitude of MAOB increase was less than those of standard astrocytic markers, significant positive correlations were observed amongst the astrocyte proteins and MAOB. Despite suggestions that MAOA (versus MAOB) is primarily responsible for metabolism of dopamine in dopamine neurons, there was no loss of the enzyme in the parkinsonian substantia nigra; instead, increased nigral levels of a MAOA fragment and ‘turnover’ of the enzyme were observed in the conditions. Our findings provide support that MAOB might serve as a biochemical imaging marker, albeit not entirely specific, for astrocyte activation in human brain. The observation that MAOB protein concentration is generally increased in degenerating brain areas in multiple system atrophy (especially putamen) and in progressive supranuclear palsy, but not in the nigra in Parkinson’s disease, also distinguishes astrocyte behaviour in Parkinson’s disease from that in the two ‘Parkinson-plus’ conditions. The question remains whether suppression of either MAOB in astrocytes or MAOA in dopamine neurons might influence progression of the parkinsonian disorders.


Sign in / Sign up

Export Citation Format

Share Document