scholarly journals “Sifarchaeota” a novel Asgard phylum capable of polysaccharide degradation and anaerobic methylotrophy

2020 ◽  
Author(s):  
Ibrahim F. Farag ◽  
Rui Zhao ◽  
Jennifer F. Biddle

AbstractThe Asgard superphylum is a deeply branching monophyletic group of Archaea, recently described as some of the closest relatives of the eukaryotic ancestor. The wide application of genomic analyses from metagenome sequencing has established six distinct phyla, whose genomes encode for diverse metabolic capacities and play important biogeochemical and ecological roles in marine sediments. Here, we describe two metagenome-assembled genomes (MAGs) recovered from deep marine sediments off Costa Rica margin, defining a novel lineage phylogenetically married to Thorarchaeota, as such we propose the name “Sifarchaeota” for this phylum. The two “Sifarchaeota” MAGs encode for an anaerobic methylotrophy pathway enabling the utilization of C1-C3 compounds (methanol and methylamines) to synthesize acetyl CoA. Also, the MAGs showed a remarkable saccharolytic capabilities compared to other Asgard lineages and encoded for diverse classes of carbohydrate active enzymes (CAZymes) targeting different mono-, di- and oligosaccharides. Comparative genomic analysis based on the full metabolic profiles of Asgard lineages revealed the close relation between “Sifarchaeota” and Odinarchaeota MAGs, which suggested a similar metabolic potentials and ecological roles. Furthermore, we identified multiple potential horizontal gene transfer (HGT) events from different bacterial donors within “Sifarchaetoa” MAGs, which hypothetically expanded “Sifarchaeota” capacities for substrate utilization, energy production and niche adaptation.ImportanceDeep marine sediments are the home of multiple poorly described archaeal lineages, many of which have ecological and evolutionary importance. We recovered metagenome-assembled genomes (MAGs) belonging to a novel Asgard phylum from the deep sediment of the Costa Rica margin. We proposed the name “Sifarchaeota” to describe the members of this phylum. Representative genomes of the “Sifarchaeota” showed remarkable saccharolytic capacities extending the known metabolic features encoded by the Asgard lineages. We attribute its ability to survive under the deep sediment conditions to its putative capacities to utilize different (C1-C3) compounds commonly encountered in deep sediment environments via anaerobic methylotrophy pathway. Also, we showed the importance of horizontal gene transfer in enhancing the “Sifarchaeota” collective adaptation strategies.

Author(s):  
Ibrahim F. Farag ◽  
Rui Zhao ◽  
Jennifer F. Biddle

The Asgard superphylum is a deeply branching monophyletic group of Archaea, recently described as some of the closest relatives of the eukaryotic ancestor. The wide application of genomic analyses from metagenome sequencing has established six distinct phyla, whose genomes encode for diverse metabolic capacities and play important biogeochemical and ecological roles in marine sediments. Here, we describe two metagenome-assembled genomes (MAGs) recovered from deep marine sediments off Costa Rica margin, defining a novel lineage phylogenetically married to Thorarchaeota, as such we propose the name “Sifarchaeota” for this phylum. The two “Sifarchaeota” MAGs encode for an anaerobic pathway for methylotrophy enabling the utilization of C1-C3 compounds (methanol and methylamines) to synthesize acetyl CoA. The MAGs showed a remarkable saccharolytic capabilities compared to other Asgard lineages and encoded for diverse classes of carbohydrate active enzymes (CAZymes) targeting different mono-, di- and oligosaccharides. Comparative genomic analysis based on the full metabolic profiles of different Asgard lineages revealed the close relation between “Sifarchaeota” and Odinarchaeota MAGs, which suggested similar metabolic potentials and ecological roles. Furthermore, we identified multiple HGT events from different bacterial donors within “Sifarchaetoa” MAGs, which hypothetically expanded “Sifarchaeota” capacities for substrate utilization, energy production and niche adaptation. Importance The exploration of deep marine sediments has unearthed many new lineages of microbes. The finding of this novel phylum of Asgard archaea is important since understanding the diversity and evolution of Asgard archaea may inform also about the evolution of eukaryotic cells. The comparison of metabolic potentials of the Asgard archaea can help inform about selective pressures the lineages have faced during evolution.


mSystems ◽  
2020 ◽  
Vol 5 (5) ◽  
Author(s):  
Zhiqiu Yin ◽  
Si Zhang ◽  
Yi Wei ◽  
Meng Wang ◽  
Shuangshuang Ma ◽  
...  

The taxonomic position of P. shigelloides has been the subject of debate for a long time, and until now, the evolutionary dynamics and pathogenesis of P. shigelloides were unclear. In this study, pan-genome analysis indicated extensive genetic diversity and the presence of large and variable gene repertoires. Our results revealed that horizontal gene transfer was the focal driving force for the genetic diversity of the P. shigelloides pan-genome and might have contributed to the emergence of novel properties. Vibrionaceae and Aeromonadaceae were found to be the predominant donor taxa for horizontal genes, which might have caused the taxonomic confusion historically. Comparative genomic analysis revealed the potential of P. shigelloides to cause intestinal and invasive diseases. Our results could advance the understanding of the evolution and pathogenesis of P. shigelloides, particularly in elucidating the role of horizontal gene transfer and investigating virulence-related elements.


2020 ◽  
Vol 202 (8) ◽  
Author(s):  
Minenosuke Matsutani ◽  
Nami Matsumoto ◽  
Hideki Hirakawa ◽  
Yuh Shiwa ◽  
Hirofumi Yoshikawa ◽  
...  

ABSTRACT Acetobacter pasteurianus is an industrial strain used for the vinegar production. Many A. pasteurianus strains with different phenotypic characteristics have been isolated so far. To understand the genetic background underpinning these phenotypes, a comparative genomic analysis of A. pasteurianus strains was conducted. Based on bioinformatics and experimental results, we report the following. (i) The gene repertoire related to the respiratory chains showed that several horizontal gene transfer events occurred after the divergence of these strains, indicating that the respiratory chain in A. pasteurianus has the diversity to adapt to its environment. (ii) There is a clear difference in thermotolerance even between 12 closely related strains. NBRC 3279, NBRC 3284, and NBRC 3283, in particular, which have only 55 mutations in total, showed differences in thermotolerance. The Na+/H+ antiporter gene nhaK2 was mutated in the thermosensitive NBRC 3279 and NBRC 3284 strains and not in the thermotolerant NBRC 3283 strain. The Na+/H+ antiporter activity of the three strains and expression of nhaK2 gene from NBRC 3283 in the two thermosensitive strains showed that these mutations are critical for thermotolerance. These results suggested that horizontal gene transfer events and several mutations have affected the phenotypes of these closely related strains. IMPORTANCE Acetobacter pasteurianus, an industrial vinegar-producing strain, exhibits diverse phenotypic differences such as respiratory activity related to acetic acid production, acetic acid resistance, or thermotolerance. In this study, we investigated the correlations between genome sequences and phenotypes among closely related A. pasteurianus strains. The gene repertoire related to the respiratory chains showed that the respiratory components of A. pasteurianus has a diversity caused by several horizontal gene transfers and mutations. In three closely related strains with clear differences in their thermotolerances, we found that the insertion or deletion that occurred in the Na+/H+ antiporter gene nhaK2 is directly related to their thermotolerance. Our study suggests that a relatively quick mutation has occurred in the closely related A. pasteurianus due to its genetic instability and that this has largely affected its phenotype.


Author(s):  
Bin Zou ◽  
Ying Huang ◽  
Pan-Pan Zhang ◽  
Xiao-Ming Ding ◽  
Huub J.M. Op den Camp ◽  
...  

The families of copper-containing membrane-bound monooxygenases (CuMMOs) and soluble di-iron monooxygenases (SDIMOs) are not only involved in methane oxidation but also in short-chain alkane oxidation. Herein, we describe Rhodococcus sp. ZPP, a bacterium able to grow with ethane or propane as the sole carbon and energy source and report on horizontal gene transfer (HGT) of actinobacterial hydrocarbon monooxygenases (HMO) of the CuMMO family and sMMO (soluble methane monooxygenase)-like SDIMO in the genus Rhodococcus. The key function of HMO in strain ZPP for propane oxidation was verified by allylthiourea inhibition. The HMO genes (designated hmoCAB) and those encoding sMMO-like SDIMO (designated smoXYB1C1Z) are located on a linear mega-plasmid (pRZP1) of strain ZPP. Comparative genomic analysis of similar plasmids indicated mobility of these plasmids within the genus Rhodococcus. The plasmid pRZP1 in strain ZPP could be conjugatively transferred to a recipient R. erythropolis in a mating experiment and showed similar ethane and propane consuming activities. Finally, our findings demonstrate that horizontal transfer of plasmid-based CuMMO and SDIMO genes confers the ability to use ethane and propane on the recipient. Importance CuMMOs and SDIMOs initiate the aerobic oxidation of alkanes in bacteria. Here, the supposition that horizontally transferred plasmid-based CuMMO and SDIMO genes confer on the recipient the similar ability to use ethane and propane was proposed and confirmed in Rhodococcus. This study is a living example of HGT of CuMMOs and SDIMOs and outlines the plasmid-borne properties responsible for gaseous alkane-degradation. Our results indicate that plasmids can support rapid evolution of enzyme-mediated biogeochemical processes.


mSystems ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Anoop Singh ◽  
Mohita Gaur ◽  
Vishal Sharma ◽  
Palak Khanna ◽  
Ankur Bothra ◽  
...  

ABSTRACT Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) genes are conserved genetic elements in many prokaryotes, including Mycobacterium tuberculosis, the causative agent of tuberculosis. Although knowledge of CRISPR locus variability has been utilized in M. tuberculosis strain genotyping, its evolutionary path in Mycobacteriaceae is not well understood. In this study, we have performed a comparative analysis of 141 mycobacterial genomes and identified the exclusive presence of the CRISPR-Cas type III-A system in M. tuberculosis complex (MTBC). Our global phylogenetic analysis of CRISPR repeats and Cas10 proteins offers evidence of horizontal gene transfer (HGT) of the CRISPR-Cas module in the last common ancestor of MTBC and Mycobacterium canettii from a Streptococcus-like environmental bacterium. Additionally, our results show that the variation of CRISPR-Cas organization in M. tuberculosis lineages, especially in the Beijing sublineage of lineage 2, is due to the transposition of insertion sequence IS6110. The direct repeat (DR) region of the CRISPR-Cas locus acts as a hot spot for IS6110 insertion. We show in M. tuberculosis H37Rv that the repeat at the 5′ end of CRISPR1 of the forward strand is an atypical repeat made up partly of IS-terminal inverted repeat and partly CRISPR DR. By tracing an undetectable spacer sequence in the DR region, the two CRISPR loci could theoretically be joined to reconstruct the ancestral single CRISPR-Cas locus organization, as seen in M. canettii. This study retracing the evolutionary events of HGT and IS6110-driven genomic deletions helps us to better understand the strain-specific variations in M. tuberculosis lineages. IMPORTANCE Comparative genomic analysis of prokaryotes has led to a better understanding of the biology of several pathogenic microorganisms. One such clinically important pathogen is M. tuberculosis, the leading cause of bacterial infection worldwide. Recent evidence on the functionality of the CRISPR-Cas system in M. tuberculosis has brought back focus on these conserved genetic elements, present in many prokaryotes. Our study advances understanding of mycobacterial CRISPR-Cas origin and its diversity among the different species. We provide phylogenetic evidence of acquisition of CRISPR-Cas type III-A in the last common ancestor shared between MTBC and M. canettii, by HGT-mediated events. The most likely source of HGT was an environmental Firmicutes bacterium. Genomic mapping of the CRISPR loci showed the IS6110 transposition-driven variations in M. tuberculosis strains. Thus, this study offers insights into events related to the evolution of CRISPR-Cas in M. tuberculosis lineages.


mBio ◽  
2012 ◽  
Vol 3 (5) ◽  
Author(s):  
Peter Jorth ◽  
Marvin Whiteley

ABSTRACTNatural transformation by competent bacteria is a primary means of horizontal gene transfer; however, evidence that competence drives bacterial diversity and evolution has remained elusive. To test this theory, we used a retrospective comparative genomic approach to analyze the evolutionary history ofAggregatibacter actinomycetemcomitans, a bacterial species with both competent and noncompetent sister strains. Through comparative genomic analyses, we reveal that competence is evolutionarily linked to genomic diversity and speciation. Competence loss occurs frequently during evolution and is followed by the loss of clustered regularly interspaced short palindromic repeats (CRISPRs), bacterial adaptive immune systems that protect against parasitic DNA. Relative to noncompetent strains, competent bacteria have larger genomes containing multiple rearrangements. In contrast, noncompetent bacterial genomes are extremely stable but paradoxically susceptible to infective DNA elements, which contribute to noncompetent strain genetic diversity. Moreover, incomplete noncompetent strain CRISPR immune systems are enriched for self-targeting elements, which suggests that the CRISPRs have been co-opted for bacterial gene regulation, similar to eukaryotic microRNAs derived from the antiviral RNA interference pathway.IMPORTANCEThe human microbiome is rich with thousands of diverse bacterial species. One mechanism driving this diversity is horizontal gene transfer by natural transformation, whereby naturally competent bacteria take up environmental DNA and incorporate new genes into their genomes. Competence is theorized to accelerate evolution; however, attempts to test this theory have proved difficult. Through genetic analyses of the human periodontal pathogenAggregatibacter actinomycetemcomitans, we have discovered an evolutionary connection between competence systems promoting gene acquisition and CRISPRs (clustered regularly interspaced short palindromic repeats), adaptive immune systems that protect bacteria against genetic parasites. We show that competentA. actinomycetemcomitansstrains have numerous redundant CRISPR immune systems, while noncompetent bacteria have lost their CRISPR immune systems because of inactivating mutations. Together, the evolutionary data linking the evolution of competence and CRISPRs reveals unique mechanisms promoting genetic heterogeneity and the rise of new bacterial species, providing insight into complex mechanisms underlying bacterial diversity in the human body.


2013 ◽  
Vol 16 (2) ◽  
pp. 525-544 ◽  
Author(s):  
Boyang Ji ◽  
Sheng-Da Zhang ◽  
Pascal Arnoux ◽  
Zoe Rouy ◽  
François Alberto ◽  
...  

2021 ◽  
Author(s):  
Yanshuang Yu ◽  
Zhenchen Xie ◽  
Jigang Yang ◽  
Jinxuan Liang ◽  
YuanPing Li ◽  
...  

Abstract Bacterial adaptation to extreme environments is often mediated by horizontal gene transfer (HGT). At the same time, phage mediated HGT for conferring bacterial arsenite and antimonite resistance has not been documented before. In this study, a highly arsenite and antimonite resistant bacterium, C. portucalensis strain Sb-2, was isolated and subsequent genome analysis showed that putative arsenite and antimonite resistance determinants were flanked or embedded by prophages. We predict these phage-mediated resistances play a significant role in maintaining genetic diversity within the genus of Citrobacter and are responsible for endowing the corresponding resistances to C. portucalensis strain Sb-2.


Sign in / Sign up

Export Citation Format

Share Document