scholarly journals Multistate Ornstein-Uhlenbeck approach for practical estimation of movement and resource selection around central places

2020 ◽  
Author(s):  
Joseph M. Eisaguirre ◽  
Travis L. Booms ◽  
Christopher P. Barger ◽  
Scott D. Goddard ◽  
Greg A. Breed

AbstractHome range dynamics and movement are central to a species’ ecology and strongly mediate both intra- and interspecific interactions. Numerous methods have been introduced to describe animal home ranges, but most lack predictive ability and cannot capture effects of dynamic environmental patterns, such as the impacts of air and water flow on movement.Here, we develop a practical, multi-stage approach for statistical inference into the behavioral mechanisms underlying how habitat and dynamic energy landscapes—in this case how airflow increases or decreases the energetic efficiency of flight—shape animal home ranges based around central places. We validated the new approach using simulations, then applied it to a sample of 12 adult golden eagles Aquila chrysaetos tracked with satellite telemetry.The application to golden eagles revealed effects of habitat variables that align with predicted behavioral ecology. Further, we found that males and females partition their home ranges dynamically based on uplift. Specifically, changes in wind and sun angle drove differential space use between sexes, especially later in the breeding season when energetic demands of growing nestlings require both parents to forage more widely.This method is easily implemented using widely available programming languages and is based on a hierarchical multistate Ornstein-Uhlenbeck space use process that incorporates habitat and energy landscapes. The underlying mathematical properties of the model allow straightforward computation of predicted utilization distributions, permitting estimation of home range size and visualization of space use patterns under varying conditions.

2010 ◽  
Vol 365 (1550) ◽  
pp. 2221-2231 ◽  
Author(s):  
John G. Kie ◽  
Jason Matthiopoulos ◽  
John Fieberg ◽  
Roger A. Powell ◽  
Francesca Cagnacci ◽  
...  

Recent advances in animal tracking and telemetry technology have allowed the collection of location data at an ever-increasing rate and accuracy, and these advances have been accompanied by the development of new methods of data analysis for portraying space use, home ranges and utilization distributions. New statistical approaches include data-intensive techniques such as kriging and nonlinear generalized regression models for habitat use. In addition, mechanistic home-range models, derived from models of animal movement behaviour, promise to offer new insights into how home ranges emerge as the result of specific patterns of movements by individuals in response to their environment. Traditional methods such as kernel density estimators are likely to remain popular because of their ease of use. Large datasets make it possible to apply these methods over relatively short periods of time such as weeks or months, and these estimates may be analysed using mixed effects models, offering another approach to studying temporal variation in space-use patterns. Although new technologies open new avenues in ecological research, our knowledge of why animals use space in the ways we observe will only advance by researchers using these new technologies and asking new and innovative questions about the empirical patterns they observe.


2021 ◽  
Author(s):  
Soumen Dey ◽  
Richard Bischof ◽  
Pierre P. A. Dupont ◽  
Cyril Milleret

AbstractSpatial capture-recapture (SCR) is now used widely to estimate wildlife densities. At the core of SCR models lies the detection function, linking individual detection probability to the distance from its latent activity center. The most common function (half-normal) assumes a bivariate normal space use and consequently detection pattern. This is likely an oversimplification and misrepresentation of real-life animal space use patterns, but studies have reported that density estimates are relatively robust to misspecified detection functions. However, information about consequences of such misspecification on space use parameters (e.g. home range area), as well as diagnostic tools to reveal it are lacking.We simulated SCR data under six different detection functions, including the half-normal, to represent a wide range of space use patterns. We then fit three different SCR models, with the three simplest detection functions (half-normal, exponential and half-normal plateau) to each simulated data set. We evaluated the consequences of misspecification in terms of bias, precision and coverage probability of density and home range area estimates. We also calculated Bayesian p-values with respect to different discrepancy metrics to assess whether these can help identify misspecifications of the detection function.We corroborate previous findings that density estimates are robust to misspecifications of the detection function. However, estimates of home range area are prone to bias when the detection function is misspecified. When fitted with the half-normal model, average relative bias of 95% kernel home range area estimates ranged between −25% and 26% depending on the misspecification. In contrast, the half-normal plateau model (an extension of the half-normal) returned average relative bias that ranged between −26% and −4%. Additionally, we found useful heuristic patterns in Bayesian p-values to diagnose the misspecification in detection function.Our analytical framework and diagnostic tools may help users select a detection function when analyzing empirical data, especially when space use parameters (such as home range area) are of interest. We urge development of additional custom goodness of fit diagnostics for Bayesian SCR models to help practitioners identify a wider range of model misspecifications.


2012 ◽  
Vol 33 (2) ◽  
pp. 185-197 ◽  
Author(s):  
Margaretha Hofmeyr ◽  
Ulric van Bloemestein ◽  
Brian Henen ◽  
Craig Weatherby

Psammobates geometricus has a limited distribution in the southwestern Cape, South Africa, where it occurs in small habitat fragments separated by agricultural and urban developments. Space use and its determining factors thus represent critical information for the effective conservation of this species. We used radiotelemetry and thread-trailing to study the movement patterns and space use of geometric tortoises over an annual cycle, and estimated home ranges with minimum convex polygons and fixed-kernel methods. Home range size of geometric tortoises showed large inter-individual variation, and for females, a positive relationship to body size. Females, the larger sex, had larger home ranges and mean daily displacements than males had. Female space use was high through most of the year, except in the wet season, when food was abundant, temperatures relatively low, and soft soils allowed easy nesting. Males used more space and displaced further in the non-nesting than nesting season, perhaps to optimise mating opportunities in the non-nesting season before females ovulate. Home ranges were more elongate and overlapped more in fallow fields than in natural vegetation, suggesting that habitat degradation alters home range structure. The space geometric tortoises used for their annual activities ranged from 1.02 to 44.85 ha. The large home ranges and effects of habitat degradation should influence the size of reserves, and the destiny of geometric tortoises in small habitat fragments.


The Condor ◽  
2017 ◽  
Vol 119 (4) ◽  
pp. 697-719 ◽  
Author(s):  
Tricia A. Miller ◽  
Robert P. Brooks ◽  
Michael J. Lanzone ◽  
Jeff Cooper ◽  
Kieran O'Malley ◽  
...  

1993 ◽  
Vol 71 (5) ◽  
pp. 869-875 ◽  
Author(s):  
Lui Marinelli ◽  
François Messier

We investigated the space-use patterns of adult muskrats in a small (77 ha) marsh on the Canadian Prairies during two breeding seasons. During the study, population size was relatively low and the adult sex ratio was biased towards females. Adult muskrats were territorial with little intrasexual home-range overlap. The exclusivity of home ranges was maintained throughout the breeding season, and appeared to decrease at the end of the season. Male movements often extended over the territory of more than one female, but the overlap was more extensive with primary than with secondary females. Lactation appeared to reduce the space use and mobility of female muskrats. Male muskrats tended to range over smaller areas when weaned young were present within their home range. The results suggest that the sexual pair is the basic social unit of muskrats but that polygyny was common. A female-biased sex ratio appeared to be responsible for the tendency of males to mate polygynously during this study, thus illustrating the plasticity of this social system.


2012 ◽  
Vol 62 (4) ◽  
pp. 381-396 ◽  
Author(s):  
Florencia Bonatto ◽  
Daniela Gomez ◽  
Andrea Steinmann ◽  
José Priotto

Patterns of space use and sexual dimorphism are frequently used to infer mating systems. We examined body size and home range size and intra- and intersexual overlap degree in order to elucidate mating strategy of Akodon azarae males. We studied spacing patterns using 113 and 129 home ranges established by males and females, respectively, in four 0.25 ha enclosures during the breeding season. Significant differences between sexes in home range size and overlap degree were found. Male home ranges were always larger than those of females. We observed exclusive space use among males and among females. Considering only those males that shared their home ranges with females, average intersexual overlap value was about 50%. Males mainly overlap their home ranges with home ranges of two or three females. Significant differences in body size were found between males and females, with males being larger. We concluded that space use and sexual dimorphism in this species is consistent with patterns characteristic of polygynous rodents, and we propose a polygynous system in A. azarae.


2017 ◽  
Author(s):  
Jeremy J. Cusack ◽  
Michel T. Kohl ◽  
Matthew C. Metz ◽  
Tim Coulson ◽  
Daniel R. Stahler ◽  
...  

AbstractThe extent to which prey space use actively minimises predation risk continues to ignite controversy. Methodological reasons that have hindered consensus include inconsistent measurements of predation risk, biased spatiotemporal scales at which responses are measured, and lack of robust null expectations.We addressed all three challenges in a comprehensive analysis of the spatiotemporal responses of adult female elk (Cervus elaphus) to the risk of predation by grey wolves (Canis lupus) during winter in northern Yellowstone, USA.We quantified spatial overlap between the winter home ranges of GPS-collared elk and three measures of predation risk: the intensity of wolf space use, the distribution of wolf-killed elk and vegetation openness. We also assessed whether elk varied their use of areas characterised by more or less predation risk across hours of the day, and estimated encounter rates between simultaneous elk and wolf pack trajectories. We determined whether observed values were significantly lower than expected if elk movements were random with reference to predation risk using a null model approach.Although a small proportion of elk did show a tendency to minimise use of open vegetation at specific times of the day, overall we highlight a notable absence of spatiotemporal response by female elk to the risk of predation posed by wolves in northern Yellowstone.Our results suggest that predator-prey interactions may not always result in strong spatiotemporal patterns of avoidance.


2020 ◽  
Author(s):  
Sarah L. Heidmann ◽  
Jonathan Jossart ◽  
Richard S. Nemeth

Abstract Background: The movement ecology of mutton snapper Lutjanus analis is poorly understood despite their ecological and economic importance in the Caribbean. Passive acoustic telemetry was used to determine home ranges of six adult L. analis, including diel patterns, in Brewers Bay, St. Thomas, US Virgin Islands. Understanding long-term space use, including site fidelity and habitat usage, is necessary to implement effective and appropriate management actions for a species with extensive space and resource needs.Results: Individual L. analis were tracked over an average period of 316 days (range 125 - 509 days) and showed high site fidelity to relatively small home ranges (mean ± SD: 0.103 ± 0.028 km2, range 0.019 - 0.190 km2) and core use areas with low overlap among individuals. Most home ranges had a habitat composition dominated by seagrass and to a lesser degree, coral reef and/or pavement. Nighttime activity spaces were distinct from but contained within daytime areas.Conclusions: Mutton snapper showed strong site fidelity to home ranges in Brewers Bay. Two individuals that were absent from the array for more than a few hours were detected at separate arrays at spawning aggregation sites. This study expands upon knowledge of mutton snapper home range characteristics, highlights the importance of maintaining adjacent high-quality habitat types in any spatial management plan, and encourages the adoption of other types of management strategies, particularly for transient-aggregating species.


2020 ◽  
Author(s):  
Michael J. Noonan ◽  
Ricardo Martinez-Garcia ◽  
Grace H. Davis ◽  
Margaret C. Crofoot ◽  
Roland Kays ◽  
...  

AbstractEcologists have long been interested in linking individual behavior with higher-level processes. For motile species, this ‘upscaling’ is governed by how well any given movement strategy maximizes encounters with positive factors, and minimizes encounters with negative factors. Despite the importance of encounter events for a broad range of ecological processes, encounter theory has not kept pace with developments in animal tracking or movement modeling. Furthermore, existing work has focused primarily on the relationship between animal movement and encounter rates while no theoretical framework exists for directly relating individual movement with the spatial locations of encounter events in the environment.Here, we bridge this gap by introducing a new theoretical concept describing the long-term encounter location probabilities for movement within home ranges, termed the conditional distribution of encounters (CDE). We then derive this distribution, as well as confidence intervals, implement its statistical estimator into open source software, and demonstrate the broad ecological relevance of this novel concept.We first use simulated data to show how our estimator provides asymptotically consistent estimates. We then demonstrate the general utility of this method for three simulation-based scenarios that occur routinely in biological systems: i) a population of individuals with home ranges that overlap with neighbors; ii) a pair of individuals with a hard territorial border between their home ranges; and iii) a predator with a large home range that encompassed the home ranges of multiple prey individuals. Using GPS data from white-faced capuchins (Cebus capucinus) tracked on Barro Colorado Island, Panama, and sleepy lizards (Tiliqua rugosa) tracked in Bundey, South Australia, we then show how the CDE can be used to estimate the locations of territorial borders, identify key resources, quantify the location-specific potential for competition, and/or identify any changes in behaviour that directly result from location-specific encounter probability.This novel target distribution enables researchers to better understand the dynamics of populations of interacting individuals. Notably, the general estimation framework developed in this work builds straightforwardly off of home range estimation and requires no specialised data collection protocols. This method is now openly available via the ctmm R package.


2008 ◽  
Vol 122 (1) ◽  
pp. 61 ◽  
Author(s):  
Matthew Schuler ◽  
Richard P. Thiel

Most studies of home ranges occur over short time periods and may not represent the spacial requirements of long-lived organisms such as turtles. Home ranges of 18 individual Blanding’s Turtles (Emydoidea blandingii) were measured using minimum convex polygons. Annual space use was compared to multi-year space use by individual turtles. We found a significant difference between annual home range size (25.5 hectares) and multi-year (two to six years) home range size (65.7 hectares; n = 18, P = 0.016). Caution should be employed when making management decisions based on short-term studies of long lived species.


Sign in / Sign up

Export Citation Format

Share Document