scholarly journals Analysis of the early Covid-19 epidemic curve in Germany by regression models with change points

Author(s):  
Helmut Küchenhoff ◽  
Felix Günther ◽  
Michael Höhle ◽  
Andreas Bender

AbstractWe analyze the Covid-19 epidemic curve from March to end of April 2020 in Germany. We use statistical models to estimate the number of cases with disease onset on a given day and use back-projection techniques to obtain the number of new infections per day. The respective time series are analyzed by a Poisson trend regression model with change points. The change points are estimated directly from the data without further assumptions. We carry out the analysis for the whole of Germany and the federal state of Bavaria, where we have more detailed data. Both analyses show a major change between March 9th and 13th for the time series of infections: from a strong increase to a stagnation or a slight decrease. Another change was found between March 24th and March 31st, where the decline intensified. These two major changes can be related to different governmental measures. On March, 11th, Chancellor Merkel appealed for social distancing in a press conference with the Robert Koch Institute (RKI) and a ban on major events with more than 1000 visitors (March 10th) was issued. The other change point at the end of March could be related to the shutdown in Germany.Our results differ from those by other authors as we take into account the reporting delay, which turned out to be time dependent and therefore changes the structure of the epidemic curve compared to the curve of newly reported cases.

2021 ◽  
Vol 149 ◽  
Author(s):  
Helmut Küchenhoff ◽  
Felix Günther ◽  
Michael Höhle ◽  
Andreas Bender

Abstract We analysed the coronavirus disease 2019 epidemic curve from March to the end of April 2020 in Germany. We use statistical models to estimate the number of cases with disease onset on a given day and use back-projection techniques to obtain the number of new infections per day. The respective time series are analysed by a trend regression model with change points. The change points are estimated directly from the data. We carry out the analysis for the whole of Germany and the federal state of Bavaria, where we have more detailed data. Both analyses show a major change between 9 and 13 March for the time series of infections: from a strong increase to a decrease. Another change was found between 25 March and 29 March, where the decline intensified. Furthermore, we perform an analysis stratified by age. A main result is a delayed course of the pandemic for the age group 80 + resulting in a turning point at the end of March. Our results differ from those by other authors as we take into account the reporting delay, which turned out to be time dependent and therefore changes the structure of the epidemic curve compared to the curve of newly reported cases.


2010 ◽  
Vol 139 (4) ◽  
pp. 505-515 ◽  
Author(s):  
S. A. HERZOG ◽  
M. PAUL ◽  
L. HELD

SUMMARYThe objective of this study was to characterize empirically the association between vaccination coverage and the size and occurrence of measles epidemics in Germany. In order to achieve this we analysed data routinely collected by the Robert Koch Institute, which comprise the weekly number of reported measles cases at all ages as well as estimates of vaccination coverage at the average age of entry into the school system. Coverage levels within each federal state of Germany are incorporated into a multivariate time-series model for infectious disease counts, which captures occasional outbreaks by means of an autoregressive component. The observed incidence pattern of measles for all ages is best described by using the log proportion of unvaccinated school starters in the autoregressive component of the model.


Author(s):  
Felix Günther ◽  
Andreas Bender ◽  
Katharina Katz ◽  
Helmut Küchenhoff ◽  
Michael Höhle

AbstractTo assess the current dynamic of an epidemic it is central to collect information on the daily number of newly diseased cases. This is especially important in real-time surveillance, when one aims at evaluating the effects of interventions on disease spread. Reporting delays between disease onset and case reporting hamper our ability to understand the dynamic of an epidemic when looking at the number of daily reported cases only. Nowcasting can be used to adjust daily case counts for occurred-but-not-yet-reported events. Here, we present a novel application of nowcasting to data on the current COVID-19 pandemic in Bavaria. It is based on a hierarchical Bayesian model that considers changes in the reporting delay distribution associated with the week and weekday of reporting and assumes a smooth epidemic curve. Furthermore, we present a way to estimate the time-dependent case reproduction number R(t) based on predictions of the nowcast. We provide methodological details of the developed approach, illustrate results based on data of the current epidemic, discuss limitations and alternative estimation strategies, and provide code for reproduction or adaption of the nowcasting to data from different regions. Results of the nowcasting approach are reported to the Bavarian health authority and published on a webpage on a daily basis.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tanja Charles ◽  
Matthias Eckardt ◽  
Basel Karo ◽  
Walter Haas ◽  
Stefan Kröger

Abstract Background Seasonality in tuberculosis (TB) has been found in different parts of the world, showing a peak in spring/summer and a trough in autumn/winter. The evidence is less clear which factors drive seasonality. It was our aim to identify and evaluate seasonality in the notifications of TB in Germany, additionally investigating the possible variance of seasonality by disease site, sex and age group. Methods We conducted an integer-valued time series analysis using national surveillance data. We analysed the reported monthly numbers of started treatments between 2004 and 2014 for all notified TB cases and stratified by disease site, sex and age group. Results We detected seasonality in the extra-pulmonary TB cases (N = 11,219), with peaks in late spring/summer and troughs in fall/winter. For all TB notifications together (N = 51,090) and for pulmonary TB only (N = 39,714) we did not find a distinct seasonality. Additional stratified analyses did not reveal any clear differences between age groups, the sexes, or between active and passive case finding. Conclusion We found seasonality in extra-pulmonary TB only, indicating that seasonality of disease onset might be specific to the disease site. This could point towards differences in disease progression between the different clinical disease manifestations. Sex appears not to be an important driver of seasonality, whereas the role of age remains unclear as this could not be sufficiently investigated.


Water ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1633
Author(s):  
Elena-Simona Apostol ◽  
Ciprian-Octavian Truică ◽  
Florin Pop ◽  
Christian Esposito

Due to the exponential growth of the Internet of Things networks and the massive amount of time series data collected from these networks, it is essential to apply efficient methods for Big Data analysis in order to extract meaningful information and statistics. Anomaly detection is an important part of time series analysis, improving the quality of further analysis, such as prediction and forecasting. Thus, detecting sudden change points with normal behavior and using them to discriminate between abnormal behavior, i.e., outliers, is a crucial step used to minimize the false positive rate and to build accurate machine learning models for prediction and forecasting. In this paper, we propose a rule-based decision system that enhances anomaly detection in multivariate time series using change point detection. Our architecture uses a pipeline that automatically manages to detect real anomalies and remove the false positives introduced by change points. We employ both traditional and deep learning unsupervised algorithms, in total, five anomaly detection and five change point detection algorithms. Additionally, we propose a new confidence metric based on the support for a time series point to be an anomaly and the support for the same point to be a change point. In our experiments, we use a large real-world dataset containing multivariate time series about water consumption collected from smart meters. As an evaluation metric, we use Mean Absolute Error (MAE). The low MAE values show that the algorithms accurately determine anomalies and change points. The experimental results strengthen our assumption that anomaly detection can be improved by determining and removing change points as well as validates the correctness of our proposed rules in real-world scenarios. Furthermore, the proposed rule-based decision support systems enable users to make informed decisions regarding the status of the water distribution network and perform effectively predictive and proactive maintenance.


BMC Medicine ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Sahamoddin Khailaie ◽  
Tanmay Mitra ◽  
Arnab Bandyopadhyay ◽  
Marta Schips ◽  
Pietro Mascheroni ◽  
...  

Abstract Background SARS-CoV-2 has induced a worldwide pandemic and subsequent non-pharmaceutical interventions (NPIs) to control the spread of the virus. As in many countries, the SARS-CoV-2 pandemic in Germany has led to a consecutive roll-out of different NPIs. As these NPIs have (largely unknown) adverse effects, targeting them precisely and monitoring their effectiveness are essential. We developed a compartmental infection dynamics model with specific features of SARS-CoV-2 that allows daily estimation of a time-varying reproduction number and published this information openly since the beginning of April 2020. Here, we present the transmission dynamics in Germany over time to understand the effect of NPIs and allow adaptive forecasts of the epidemic progression. Methods We used a data-driven estimation of the evolution of the reproduction number for viral spreading in Germany as well as in all its federal states using our model. Using parameter estimates from literature and, alternatively, with parameters derived from a fit to the initial phase of COVID-19 spread in different regions of Italy, the model was optimized to fit data from the Robert Koch Institute. Results The time-varying reproduction number (Rt) in Germany decreased to <1 in early April 2020, 2–3 weeks after the implementation of NPIs. Partial release of NPIs both nationally and on federal state level correlated with moderate increases in Rt until August 2020. Implications of state-specific Rt on other states and on national level are characterized. Retrospective evaluation of the model shows excellent agreement with the data and usage of inpatient facilities well within the healthcare limit. While short-term predictions may work for a few weeks, long-term projections are complicated by unpredictable structural changes. Conclusions The estimated fraction of immunized population by August 2020 warns of a renewed outbreak upon release of measures. A low detection rate prolongs the delay reaching a low case incidence number upon release, showing the importance of an effective testing-quarantine strategy. We show that real-time monitoring of transmission dynamics is important to evaluate the extent of the outbreak, short-term projections for the burden on the healthcare system, and their response to policy changes.


2015 ◽  
Vol 7 (2) ◽  
pp. 262-279 ◽  
Author(s):  
Zhichao Guo ◽  
Yuanhua Feng ◽  
Thomas Gries

Purpose – The purpose of this paper is to investigate changes of China’s agri-food exports to Germany caused by China’s accession to WTO and the global financial crisis in a quantitative way. The paper aims to detect structural breaks and compare differences before and after the change points. Design/methodology/approach – The structural breaks detection procedures in this paper can be applied to find out two different types of change points, i.e. in the middle and at the end of one time series. Then time series and regression models are used to compare differences of trade relationship before and after the detected change points. The methods can be employed in any economic series and work well in practice. Findings – The results indicate that structural breaks in 2002 and 2009 are caused by China’s accession to WTO and the financial crisis. Time series and regression models show that the development of China’s exports to Germany in agri-food products has different features in different sub-periods. Before 1999, there is no significant relationship between China’s exports to Germany and Germany’s imports from the world. Between 2002 and 2008 the former depends on the latter very strongly, and China’s exports to Germany developed quickly and stably. It decreased, however suddenly in 2009, caused by the great reduction of Germany’s imports from the world in that year. But China’s market share in Germany still had a small gain. Analysis of two categories in agri-food trade also leads to similar conclusions. Comparing the two events we see rather different patterns even if they both indicate structural breaks in the development of China’s agri-food exports to Germany. Originality/value – This paper partly originally proposes two statistical algorithms for detecting different kinds of structural breaks in the middle part and at the end of a short-time series, respectively.


Sign in / Sign up

Export Citation Format

Share Document