scholarly journals Perceptual Degradation Affects Stop-Signal Performance in Normal Healthy Adults

2020 ◽  
Author(s):  
Maria V. Soloveva ◽  
Sharna D. Jamadar ◽  
Matthew Hughes ◽  
Dennis Velakoulis ◽  
Govinda Poudel ◽  
...  

AbstractDuring stop-signal task performance, little is known how the quality of visual information of the ‘go’ stimuli may indirectly affect the interplay between the ‘go’ and ‘stop’ processes. In this study, we assessed how perceptual degradation of the visual ‘go’ stimuli affect response inhibition. Twenty-six healthy individuals (mean age 33.34 ± 9.61) completed a modified 12-minute stop-signal task, where ‘V’ and ‘Y’ letters were used as visual ‘go’ stimuli. The stimuli were subjected to four levels of perceptual degradation using Gaussian smoothing, to parametrically manipulate stop difficulty across low, intermediate-1, intermediate-2 and high difficulty conditions. On 33% of trials, the stop-signal (50ms audio tone) followed a ‘go’ stimulus after a stop-signal delay, which was individually adjusted for each participant. As predicted, we found that with increased level of stop difficulty (little perceptual degradation), reaction times on ‘go’ trials and the proportion of successful behavioural inhibitions on ‘stop’ trials (P(i)) decreased in normal healthy adults. Contrary to our predictions, there was no effect of increased stop difficulty on the number of correct responses on ‘go’ trials and reaction times on ‘stop’ trials. Overall, manipulation of the completion time of the ‘go’ process via perceptual degradation has been partially successful, whereby increased stop difficulty differentially affected P(i) and SSRT. These findings have implications for the relationship between the ‘go’ and ‘stop’ processes and the horse-race model, which may be limited in explaining the role of various cortico-basal ganglia loops in modulation of response inhibition.HighlightsManipulation of the completion time of the ‘go’ process is partially successfulPerceptual degradation differentially affects stop-signal performanceIncreased stop difficulty (easy ‘go’) results in lower P(i)Increased stop difficulty (easy ‘go’) has no effect on SSRTHorse-race model does not fully explain basal ganglia involvement in inhibition

2021 ◽  
Vol 14 (2) ◽  
pp. 207-217
Author(s):  
Armando dos Santos Afonso ◽  
Anna Carolina de Almeida Portugal ◽  
Ariane Leão Caldas ◽  
Luiz Renato Rodrigues Carreiro ◽  
Walter Machado-Pinheiro

2020 ◽  
Vol 46 (Supplement_1) ◽  
pp. S63-S63
Author(s):  
Ya Wang ◽  
Lu-xia Jia ◽  
Xiao-jing Qin ◽  
Jun-yan Ye ◽  
Raymond Chan

Abstract Background Schizotypy, a subclinical group at risk for schizophrenia, have been found to show impairments in response inhibition. Recent studies differentiated proactive inhibition (a preparatory process before the stimuli appears) and reactive inhibition (the inhibition of a pre-potent or already initiated response). However, it remains unclear whether both proactive and reactive inhibition are impaired in schizotypy and what are the neural mechanisms. The present event-related potential study used an adapted stop-signal task to examine the two inhibition processes and the underlying neural mechanisms in schizotypy compared to healthy controls (HC). Methods A total of 21 individuals with schizotypy and 25 matched HC participated in this study. To explore different degrees of proactive inhibition, we set three conditions: a “certain” go condition which no stop signal occurred, a “17% no go” condition in which stop signal would appear in 17% of trials, and a “33% no go” condition in which stop signal would appear in 33% of trials. All participants completed all the conditions, and EEG was recorded when participants completed the task. Results Behavioral results showed that in both schizotypy and HC, the reaction times (RT) of go trials were significantly prolonged as the no go percentage increased, and HC showed significantly longer go RT compared with schizotypy in both “17% no go” and “33% no go” conditions, suggesting greater proactive inhibition in HC. Stop signal reaction times (SSRTs) in “33% no go” condition was shorter than “17% no go” condition in both groups. Schizotypy showed significantly longer SSRTs in both “17% no go” and “33% no go” conditions than HC, indicating schizotypy relied more on reactive inhibition. ERP results showed that schizotypy showed larger overall N1 for go trials than HC irrespective of condition, which may indicate a compensation process in schizotypy. Schizotypy showed smaller N2 on both successful and unsuccessful stop trials in “17% no go” conditions than HC, while no group difference was found in “33% no go” conditions for stop trials, which may indicate impaired error processing. Discussion These results suggested that schizotypy tended to be impaired in both proactive control and reactive control processes.


2003 ◽  
Vol 56 (4) ◽  
pp. 1-20 ◽  
Author(s):  
Tim McGarry ◽  
Romeo Chua ◽  
Ian M. Franks

The ability to inhibit an unfolding action is usually investigated using a stop signal (or go—stop) task. The data from the stop-signal task are often described using a horse-race model whose key assumption is that each process (i.e., go, stop) exhibits stochastic independence. Using three variations of a coincident-timing task (i.e., go, go—stop, and go—stop—go) we extend previous considerations of stochastic independence by analysing the go latencies for prior effects of stopping. On random trials in the go—stop—go task the signal sweep was paused for various times at various distances before the target. Significant increases in latency errors were reported on those trials on which the signal was paused (p <.005). Further analyses of the pause trials revealed significant effects for both the stopping interval (p <.001) and the pause interval (p <.05). Tukey post hoc analyses demonstrated increased latency errors as a linear function of the stopping interval, as expected, and decreased latency errors as a nonlinear function of the pause interval. These latter results indicate that the latencies of the go process, as reflected in the latency errors, may not exhibit stochastic independence under certain conditions. Various control mechanisms were considered in an attempt to explain these data.


2020 ◽  
Author(s):  
Claire O'Callaghan ◽  
Frank Hubert Hezemans ◽  
Rong Ye ◽  
Catarina Rua ◽  
P Simon Jones ◽  
...  

Cognitive decline is a common feature of Parkinson's disease, and many of these cognitive deficits fail to respond to dopaminergic therapy. Therefore, targeting other neuromodulatory systems represents an important therapeutic strategy. Among these, the locus coeruleus-noradrenaline system has been extensively implicated in response inhibition deficits. Restoring noradrenaline levels using the noradrenergic reuptake inhibitor atomoxetine can improve response inhibition in some patients with Parkinson's disease, but there is considerable heterogeneity in treatment response. Accurately predicting the patients who would benefit from therapies targeting this neurotransmitter system remains a critical goal, in order to design the necessary clinical trials with stratified patient selection to establish the therapeutic potential of atomoxetine. Here, we test the hypothesis that integrity of the noradrenergic locus coeruleus explains the variation in improvement of response inhibition following atomoxetine. In a double-blind placebo-controlled randomised crossover design, 19 people with Parkinson's disease completed an acute psychopharmacological challenge with 40 mg of oral atomoxetine or placebo. A stop-signal task was used to measure response inhibition, with stop-signal reaction times obtained through hierarchical Bayesian estimation of an ex-Gaussian race model. Twenty-six control subjects completed the same task without undergoing the drug manipulation. In a separate session, patients and controls underwent ultra-high field 7T imaging of the locus coeruleus using a neuromelanin-sensitive magnetisation transfer sequence. The principal result was that atomoxetine improved stop-signal reaction times in those patients with lower locus coeruleus integrity. This was in the context of a general impairment in response inhibition, as patients on placebo had longer stop-signal reaction times compared to controls. We also found that the caudal portion of the locus coeruleus showed the largest neuromelanin signal decrease in the patients compared to controls. Our results highlight a link between the integrity of the noradrenergic locus coeruleus and response inhibition in Parkinson's disease patients. Furthermore, they demonstrate the importance of baseline noradrenergic state in determining the response to atomoxetine. We suggest that locus coeruleus neuromelanin imaging offers a marker of noradrenergic capacity that could be used to stratify patients in trials of noradrenergic therapy and to ultimately inform personalised treatment approaches.


2003 ◽  
Vol 112 (2) ◽  
pp. 105-142 ◽  
Author(s):  
Guido P.H. Band ◽  
Maurits W. van der Molen ◽  
Gordon D. Logan

2006 ◽  
Vol 18 (4) ◽  
pp. 626-636 ◽  
Author(s):  
Wery P. M. van den Wildenberg ◽  
Geert J. M. van Boxtel ◽  
Maurits W. van der Molen ◽  
D. Andries Bosch ◽  
Johannes D. Speelman ◽  
...  

The aim of the present study was to specify the involvement of the basal ganglia in motor response selection and response inhibition. Two samples were studied. The first sample consisted of patients diagnosed with Parkinson's disease (PD) who received deep-brain stimulation (DBS) of the subthalamic nucleus (STN). The second sample consisted of patients who received DBS for the treatment of PD or essential tremor (ET) in the ventral intermediate nucleus of the thalamus (Vim). Stop-signal task and go/no-go task performances were studied in both groups. Both groups performed these tasks with (on stimulation) and without (off stimulation) DBS to address the question of whether stimulation is effective in improving choice reaction time (RT) and stop-signal RT. The results show that DBS of the STN was associated with significantly enhanced inhibitory control, as indicated by shorter stop-signal RTs. An additional finding is that DBS of the STN led to significantly shorter choice RT. The effects of DBS on responding and response inhibition were functionally independent. Although DBS of the Vim did not systematically affect task performance in patients with ET, a subgroup of Vim-stimulated PD patients showed enhanced stop-signal RTs in on stimulation versus off stimulation. This result suggests that the change in performance to stop signals may not be directly related to STN function, but rather results from a change in PD function due to DBS in general. The findings are discussed in terms of current functional and neurobiological models that relate basal ganglia function to the selection and inhibition of motor responses.


2017 ◽  
Author(s):  
Hans Colonius ◽  
Adele Diederich

The ability to inhibit our responses voluntarily is an important case of cognitive control. The stop-signal paradigm is a popular tool to study response inhibition. Participants perform a response time task (go task) and, occasionally, the go stimulus is followed by a stop signal after a variable delay, indicating subjects to withhold their response (stop task). The main interest of modeling is in estimating the unobservable stop-signal processing time, that is, the covert latency of the stopping process as a characterization of the response inhibition mechanism. In theindependent race modelthe stop-signal task is represented as a race between stochastically independent go and stop processes. Without making any specific distributional assumptions about the processing times, the model allows to estimate the mean time to cancel a response. However, neurophysiological studies on countermanding saccadic eye movements have shown that neural correlates of go and stop processes consist of networks of mutuallyinteractinggaze-shifting and gaze-holding neurons. This poses a major challenge in formulating linking propositions between the behavioral and neural findings. Here we propose adependent race modelthat postulates perfect negative stochastic dependence between go and stop activations. The model is consistent with the concept of interacting processes while retaining the simplicity and elegance of the distribution-free independent race model. For mean data, the dependent model’s predictions remain identical to those of the independent model. The resolution of this apparent paradox advances the understanding of mechanisms of response inhibition and paves the way for modeling more complex situations.


2021 ◽  
Author(s):  
Antoinette Poulton ◽  
Li Peng Evelyn Chen ◽  
Michael Fox ◽  
Robert Hester

BACKGROUND Considered a facet of behavioural impulsivity, response inhibition facilitates adaptive and goal-directed behaviour. It is often assessed using the Stop-Signal Task (SST), which is presented on stand-alone computers under controlled laboratory conditions. Sample size may consequently be a function of cost/time and sample diversity constrained to those willing/able to attend the lab. Statistical power and generalisability of results might, in turn, be impacted. Such limitations may potentially be overcome via the implementation of online testing. OBJECTIVE The aim of this study was to investigate if there were differences between variables derived from an online SST when it was undertaken independently – that is, outside the laboratory, on any computer, and in the absence of researchers – versus when it was performed under laboratory conditions. METHODS We programmed a web-based SST in HTML and JavaScript and employed a counter-balanced design. A total of 166 individuals (Mage = 19.72, SD = 1.85, range: 18-36, 88% female) were recruited. Of these, n = 79 undertook the independent task prior to visiting the laboratory and n = 78 completed the independent task following their laboratory visit. Average time between SST testing was 3.72 days (SD = 2.86). Dependent samples and Bayesian paired samples t-tests were utilised to examine differences between lab-based and independent SST variables. Correlational analyses were conducted on stop-signal reaction times (SSRT). RESULTS After exclusions, 123 participants (Mage = 19.73, SD = 1.97) completed the SST both in the laboratory and independently. While participants were less accurate on go trials and exhibited reduced inhibitory control when undertaking the independent – as compared to the lab-based – SST, there was a positive association between the SSRT of each condition (r = .48, P < .001, 95% CI [0.33, 0.61]). CONCLUSIONS Findings suggest an online SST, which participants undertake on any computer, in any location, and in the absence of the researcher, is a suitable measure of response inhibition.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mario Paci ◽  
Giulio Di Cosmo ◽  
Mauro Gianni Perrucci ◽  
Francesca Ferri ◽  
Marcello Costantini

AbstractInhibitory control is the ability to suppress inappropriate movements and unwanted actions, allowing to regulate impulses and responses. This ability can be measured via the Stop Signal Task, which provides a temporal index of response inhibition, namely the stop signal reaction time (SSRT). At the neural level, Transcranial Magnetic Stimulation (TMS) allows to investigate motor inhibition within the primary motor cortex (M1), such as the cortical silent period (CSP) which is an index of GABAB-mediated intracortical inhibition within M1. Although there is strong evidence that intracortical inhibition varies during action stopping, it is still not clear whether differences in the neurophysiological markers of intracortical inhibition contribute to behavioral differences in actual inhibitory capacities. Hence, here we explored the relationship between intracortical inhibition within M1 and behavioral response inhibition. GABABergic-mediated inhibition in M1 was determined by the duration of CSP, while behavioral inhibition was assessed by the SSRT. We found a significant positive correlation between CSP’s duration and SSRT, namely that individuals with greater levels of GABABergic-mediated inhibition seem to perform overall worse in inhibiting behavioral responses. These results support the assumption that individual differences in intracortical inhibition are mirrored by individual differences in action stopping abilities.


2021 ◽  
Vol 7 (12) ◽  
pp. eabf4355
Author(s):  
Patrick G. Bissett ◽  
Henry M. Jones ◽  
Russell A. Poldrack ◽  
Gordon D. Logan

The stop-signal paradigm, a primary experimental paradigm for understanding cognitive control and response inhibition, rests upon the theoretical foundation of race models, which assume that a go process races independently against a stop process that occurs after a stop-signal delay (SSD). We show that severe violations of this independence assumption at short SSDs occur systematically across a wide range of conditions, including fast and slow reaction times, auditory and visual stop signals, manual and saccadic responses, and especially in selective stopping. We also reanalyze existing data and show that conclusions can change when short SSDs are excluded. Last, we suggest experimental and analysis techniques to address this violation, and propose adjustments to extant models to accommodate this finding.


Sign in / Sign up

Export Citation Format

Share Document