scholarly journals Nucleoid associated proteins and their effect on E. coli chromosome

2020 ◽  
Author(s):  
Ankit Gupta ◽  
Abdul Wasim ◽  
Jagannath Mondal

AbstractA seemingly random and disorganized bacterial chromosome, in reality, is a well organized nucleus-like structure, called the nucleoid, which is maintained by several nucleoid associated proteins(NAPs). Here we present an application of a previously developed Hi-C based computational method to study the effects of some of these proteins on the E. coli chromosome. Simulations with encoded Hi-C data for mutant, hupAB deficient, E. coli cells, revealed a decondensed, axially expanded chromosome with enhanced short range and diminished long range interactions. Simulations for mutant cells deficient in FIS protein revealed that the effects are similar to that of the hupAB mutant, but the absence of FIS led to a greater disruption in chromosome organization. Absence of another NAP, MatP, known to mediate Ter macrodomain isolation, led to enhanced contacts between Ter and its flanking macrodomains but lacked any change in matS sites’ localization. Deficiency of MukBEF, the only SMC complex present in E. coli, led to disorganization of macrodomains. Upon further analysis, it was observed that the above mutations do not significantly impact the local chromosome organization (~ 100 Kb) but only affect the chromosome on a larger scale (>100 Kb). These observations shed more light on the sparsely explored effects of NAPs on the overall chromosome organization and helps us understand the myriad complex interactions NAPs have with the chromosome.

1992 ◽  
Vol 8 (1) ◽  
pp. 3-8 ◽  
Author(s):  
Samuel Sokol ◽  
Vance Zemon ◽  
Anne Moskowitz

AbstractThe development of lateral inhibitory interactions in the infant visual system, as reflected by the visual-evoked potential (VEP), was studied using a radial, asymmetrical windmill-dartboard stimulus. This contrast-reversing stimulus generates VEP responses with a strong fundamental frequency component and an attenuated second harmonic component (relative to that obtained using a symmetrical stimulus). These two harmonic components reflect distinct phenomena, and appear to be the result of short-range (the fundamental) and long-range (attenuated second harmonic) lateral inhibitory interactions elicited by differential luminance-modulation of contiguous spatial regions. We studied the development of the short-and long-range interactions at 100% and 30% contrast in human infants using both VEP amplitude and phase measures. Attenuation of the second harmonic (long-range interactions) was adult-like by 8 weeks of age while the strength of the fundamental (short-range interactions) was adult-like by 20 weeks suggesting a differential development of long-range and short-range interactions. In contrast, corresponding phase data indicated significant immaturities at 20 weeks of age for both the short-and long-range components.


2000 ◽  
Vol 11 (05) ◽  
pp. 913-919
Author(s):  
A. S. ELGAZZAR ◽  
E. AHMED

A self-organized critical earthquake model is proposed taking into account the effect of both short-range and long-range interactions. The model obeys both Gutenberg–Richter and Omori laws in addition to being more realistic than other models.


PLoS Genetics ◽  
2012 ◽  
Vol 8 (4) ◽  
pp. e1002672 ◽  
Author(s):  
Axel Thiel ◽  
Michèle Valens ◽  
Isabelle Vallet-Gely ◽  
Olivier Espéli ◽  
Frédéric Boccard

2019 ◽  
Vol 9 (3) ◽  
pp. 20180070 ◽  
Author(s):  
Ravinda S. Gunaratne ◽  
Daniel B. Wilson ◽  
Mark B. Flegg ◽  
Radek Erban

This work investigates multi-resolution methodologies for simulating dimer models. The solvent particles which make up the heat bath interact with the monomers of the dimer either through direct collisions (short-range) or through harmonic springs (long-range). Two types of multi-resolution methodologies are considered in detail: (a) describing parts of the solvent far away from the dimer by a coarser approach; (b) describing each monomer of the dimer by using a model with different level of resolution. These methodologies are then used to investigate the effect of a shared heat bath versus two uncoupled heat baths, one for each monomer. Furthermore, the validity of the multi-resolution methods is discussed by comparison to dynamics of macroscopic Langevin equations.


2021 ◽  
Vol 10 (4) ◽  
Author(s):  
Guy Zisling ◽  
Lea Santos ◽  
Yevgeny Bar Lev

We numerically investigate the minimum number of interacting particles, which is required for the onset of strong chaos in quantum systems on a one-dimensional lattice with short-range and long-range interactions. We consider multiple system sizes which are at least three times larger than the number of particles and find that robust signatures of quantum chaos emerge for as few as 4 particles in the case of short-range interactions and as few as 3 particles for long-range interactions, and without any apparent dependence on the size of the system.


Sign in / Sign up

Export Citation Format

Share Document