scholarly journals Antagonistic activities of Fmn2 and ADF regulate axonal F-actin patch dynamics and the initiation of collateral branching

2020 ◽  
Author(s):  
Tanushree Kundu ◽  
Sooraj S Das ◽  
Divya Sthanu Kumar ◽  
Lisas K Sewatkar ◽  
Aurnab Ghose

ABSTRACTInterstitial collateral branching of axons is a critical component in the development of functional neural circuits. Axon collateral branches are established through a series of cellular processes initiated by the development of a specialized, focal F-actin network in axons. The formation, maintenance and remodelling of this F-actin patch is critical for the initiation of axonal protrusions that are subsequently consolidated to form a collateral branch. However, the mechanisms regulating F-actin patch dynamics are poorly understood.Fmn2 is a formin family member implicated in multiple neurodevelopmental disorders. We find that Fmn2 regulates the initiation of axon collateral protrusions. Fmn2 localises to the protrusion-initiating axonal F-actin patches and regulates the lifetime and size of these F-actin networks. The F-actin nucleation activity of Fmn2 is necessary for F-actin patch stability but not for initiating patch formation. We show that Fmn2 insulates the F-actin patches from disassembly by the actin-depolymerizing factor, ADF, and promotes long-lived, larger patches that are competent to initiate axonal protrusions.The regulation of axonal branching can contribute to the neurodevelopmental pathologies associated with Fmn2 and the dynamic antagonism between Fmn2 and ADF may represent a general mechanism of formin-dependent protection of Arp2/3-initiated F-actin networks from disassembly.

2020 ◽  
Author(s):  
Chiara Galloni ◽  
Davide Carra ◽  
Jasmine V. G. Abella ◽  
Svend Kjær ◽  
Pavithra Singaravelu ◽  
...  

AbstractThe Arp2/3 complex (Arp2, Arp3 and ARPC1-5) is essential to generate branched actin filament networks for many cellular processes. Human Arp3, ARPC1 and ARPC5 exist as two isoforms but the functional properties of Arp2/3 iso-complexes is largely unexplored. Here we show that Arp3B, but not Arp3 is subject to regulation by the methionine monooxygenase MICAL2, which is recruited to branched actin networks by coronin-1C. Although Arp3 and Arp3B iso-complexes promote actin assembly equally efficiently in vitro, they have different cellular properties. Arp3B turns over significantly faster than Arp3 within the network and upon its depletion actin turnover decreases. Substitution of Arp3B Met293 by Thr, the corresponding residue in Arp3 increases actin network stability, and conversely, replacing Arp3 Thr293 with Gln to mimic Met oxidation promotes network disassembly. Thus, MICAL2 regulates a subset of Arp2/3 complexes to control branched actin network disassembly.


2020 ◽  
Author(s):  
Julien Pernier ◽  
Antoine Morchain ◽  
Valentina Caorsi ◽  
Aurélie Bertin ◽  
Hugo Bousquet ◽  
...  

AbstractMotile and morphological cellular processes require a spatially and temporally coordinated branched actin network that is controlled by the activity of various regulatory proteins including the Arp2/3 complex, profilin, cofilin and tropomyosin. We have previously reported that myosin 1b regulates the density of the actin network in the growth cone. Using in vitro F-actin gliding assays and total internal reflection fluorescence (TIRF) microscopy we show in this report that this molecular motor flattens the Arp2/3-dependent actin branches up to breaking them and reduces the probability to form new branches. This experiment reveals that myosin 1b can produce force sufficient enough to break up the Arp2/3-mediated actin junction. Together with the former in vivo studies, this work emphasizes the essential role played by myosins in the architecture and in the dynamics of actin networks in different cellular regions.Short summaryUsing in vitro F-actin gliding assays and total internal reflection fluorescence (TIRF) microscopy we show that myosin flattens the Arp2/3-dependent actin branches up to breaking them and reduces the probability to form new branches


2017 ◽  
Author(s):  
Jenna R. Christensen ◽  
Kaitlin E. Homa ◽  
Meghan E. O’Connell ◽  
David R. Kovar

ABSTRACTWe previously discovered that competition between fission yeast actin binding proteins (ABPs) for association with F-actin helps facilitate their sorting to different F-actin networks. Specifically, competition between actin patch ABPs fimbrin Fim1 and cofilin Adf1 enhances each other’s activities, and rapidly displaces tropomyosin Cdc8 from the F-actin network. However, these interactions don’t explain how Fim1, a robust competitor, is prevented from associating equally well with other F-actin networks. Here, with a combination of fission yeast genetics, live cell fluorescent imaging, and in vitro TIRF microscopy, we identified the contractile ring ABP α-actinin Ain1 as a key sorting factor. Fim1 competes with Ain1 for association with F-actin, which is dependent upon their residence time on F-actin. Remarkably, although Fim1 outcompetes both contractile ring ABPs Ain1 and Cdc8 individually, Cdc8 enhances the bundling activity of Ain1 10-fold, allowing the combination of Ain1 and Cdc8 to inhibit Fim1 association with contractile ring F-actin.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Johanna Funk ◽  
Felipe Merino ◽  
Matthias Schaks ◽  
Klemens Rottner ◽  
Stefan Raunser ◽  
...  

AbstractHeterodimeric capping protein (CP/CapZ) is an essential factor for the assembly of branched actin networks, which push against cellular membranes to drive a large variety of cellular processes. Aside from terminating filament growth, CP potentiates the nucleation of actin filaments by the Arp2/3 complex in branched actin networks through an unclear mechanism. Here, we combine structural biology with in vitro reconstitution to demonstrate that CP not only terminates filament elongation, but indirectly stimulates the activity of Arp2/3 activating nucleation promoting factors (NPFs) by preventing their association to filament barbed ends. Key to this function is one of CP’s C-terminal “tentacle” extensions, which sterically masks the main interaction site of the terminal actin protomer. Deletion of the β tentacle only modestly impairs capping. However, in the context of a growing branched actin network, its removal potently inhibits nucleation promoting factors by tethering them to capped filament ends. End tethering of NPFs prevents their loading with actin monomers required for activation of the Arp2/3 complex and thus strongly inhibits branched network assembly both in cells and reconstituted motility assays. Our results mechanistically explain how CP couples two opposed processes—capping and nucleation—in branched actin network assembly.


Author(s):  
Yashar Bashirzadeh ◽  
Steven A. Redford ◽  
Chatipat Lorpaiboon ◽  
Alessandro Groaz ◽  
Thomas Litschel ◽  
...  

AbstractRobust spatiotemporal organization of cytoskeletal networks is crucial, enabling cellular processes such as cell migration and division. α-Actinin and fascin are two actin crosslinking proteins localized to distinct regions of eukaryotes to form actin bundles with optimized spacing for cell contractile machinery and sensory projections, respectively. In vitro reconstitution assays and coarse-grained simulations have shown that these actin bundling proteins segregate into distinct domains with a bundler size-dependent competition-based mechanism, driven by the minimization of F-actin bending energy. However, it is not known how physical confinement imposed by the cell membrane contributes to sorting of actin bundling proteins and the concomitant reorganization of actin networks in intracellular environment. Here, by encapsulating actin, α-actinin, and fascin in giant unilamellar vesicles (GUVs), we show that the size of such a spherical boundary determines equilibrated structure of actin networks among three typical structures: single rings, astral structures, and star-like structures. We show that α-actinin bundling activity and its tendency for clustering actin is central to the formation of these structures. By analyzing physical features of crosslinked actin networks, we show that spontaneous sorting and domain formation of α-actinin and fascin are intimately linked to the resulting structures. We propose that the observed boundary-imposed effect on sorting and structure formation is a general mechanism by which cells can select between different structural dynamical steady states.


2018 ◽  
Author(s):  
Justin Parreno ◽  
Velia M Fowler

Tropomodulins (Tmods) are proteins that cap the slow growing (pointed) ends of actin filaments (F-actin). The basis for our current understanding of Tmod function comes from studies in cells with relatively stable and highly organized F-actin networks, leading to the view that Tmod capping functions principally to preserve F-actin stability. However, not only is Tmod capping dynamic, but it also can play major roles in regulating diverse cellular processes involving F-actin remodeling. Here, we highlight the multifunctional roles of Tmod with a focus on Tmod3. Like other Tmods, Tmod3 binds tropomyosin (Tpm) and actin, capping pure F-actin at submicromolar and Tpm-coated F-actin at nanomolar concentrations. Unlike other Tmods, Tmod3 can also bind actin monomers and its ability to bind actin is inhibited by phosphorylation of Tmod3 by Akt2. Tmod3 is ubiquitously expressed and present in a diverse array of cytoskeletal structures, including contractile structures such as sarcomere-like units of actomyosin stress fibers and in the F-actin network encompassing adherens junctions. Tmod3 participates in F-actin network remodeling in lamellipodia during cell migration, and in the assembly of specialized F-actin networks during exocytosis. Furthermore, Tmod3 is required for development, regulating F-actin mesh formation during meiosis I of mouse oocytes, erythroblast enucleation in definitive erythropoiesis, and megakaryocyte morphogenesis in the mouse fetal liver. Thus, Tmod3 plays vital roles in dynamic and stable F-actin networks in cell physiology and development, with further research required to delineate the mechanistic details of Tmod3 regulation in the aforementioned processes, or in other yet to be discovered processes.


2018 ◽  
Vol 29 (11) ◽  
pp. 1346-1358 ◽  
Author(s):  
Andrea Picco ◽  
Wanda Kukulski ◽  
Hetty E. Manenschijn ◽  
Tanja Specht ◽  
John A. G. Briggs ◽  
...  

Branched and cross-linked actin networks mediate cellular processes that move and shape membranes. To understand how actin contributes during the different stages of endocytic membrane reshaping, we analyzed deletion mutants of yeast actin network components using a hybrid imaging approach that combines live imaging with correlative microscopy. We could thus temporally dissect the effects of different actin network perturbations, revealing distinct stages of actin-based membrane reshaping. Our data show that initiation of membrane bending requires the actin network to be physically linked to the plasma membrane and to be optimally cross-linked. Once initiated, the membrane invagination process is driven by nucleation and polymerization of new actin filaments, independent of the degree of cross-linking and unaffected by a surplus of actin network components. A key transition occurs 2 s before scission, when the filament nucleation rate drops. From that time point on, invagination growth and vesicle scission are driven by an expansion of the actin network without a proportional increase of net actin amounts. The expansion is sensitive to the amount of filamentous actin and its cross-linking. Our results suggest that the mechanism by which actin reshapes the membrane changes during the progress of endocytosis, possibly adapting to varying force requirements.


2020 ◽  
Vol 133 (18) ◽  
pp. jcs247403 ◽  
Author(s):  
Julien Pernier ◽  
Antoine Morchain ◽  
Valentina Caorsi ◽  
Aurélie Bertin ◽  
Hugo Bousquet ◽  
...  

ABSTRACTMotile and morphological cellular processes require a spatially and temporally coordinated branched actin network that is controlled by the activity of various regulatory proteins, including the Arp2/3 complex, profilin, cofilin and tropomyosin. We have previously reported that myosin 1b regulates the density of the actin network in the growth cone. Here, by performing in vitro F-actin gliding assays and total internal reflection fluorescence (TIRF) microscopy, we show that this molecular motor flattens (reduces the branch angle) in the Arp2/3-dependent actin branches, resulting in them breaking, and reduces the probability of new branches forming. This experiment reveals that myosin 1b can produce force sufficient enough to break up the Arp2/3-mediated actin junction. Together with the former in vivo studies, this work emphasizes the essential role played by myosins in the architecture and dynamics of actin networks in different cellular regions.This article has an associated First Person interview with the first author of the paper.


2017 ◽  
Author(s):  
Andrea Picco ◽  
Wanda Kukulski ◽  
Hetty E. Manenschijn ◽  
Tanja Specht ◽  
John A. G. Briggs ◽  
...  

AbstractBranched and crosslinked actin networks mediate cellular processes that move and shape membranes. To understand how actin contributes during the different stages of endocytic membrane reshaping, we analysed deletion mutants of yeast actin network components using a hybrid imaging approach that combines live imaging with correlative microscopy. We could thereby temporally dissect the effects of different actin network perturbations, revealing distinct stages of actin-based membrane reshaping. Our data show that initiation of membrane bending requires the actin network to be physically linked to the plasma membrane and to be optimally crosslinked. Once initiated, the membrane invagination process is driven by nucleation and polymerization of new actin filaments, independently of the degree of cross-linking and unaffected by a surplus of actin network components. A key transition occurs 2 seconds before scission when the filament nucleation rate drops. From that time point on, invagination growth and vesicle scission are driven by an expansion of the assembled actin network. The expansion is sensitive to the amount of filamentous actin and its crosslinking. Our results suggest that the mechanism by which actin reshapes the membrane adapts to force requirements that vary during the progress of endocytosis.


2018 ◽  
Author(s):  
Justin Parreno ◽  
Velia M Fowler

Tropomodulins (Tmods) are proteins that cap the slow growing (pointed) ends of actin filaments (F-actin). The basis for our current understanding of Tmod function comes from studies in cells with relatively stable and highly organized F-actin networks, leading to the view that Tmod capping functions principally to preserve F-actin stability. However, not only is Tmod capping dynamic, but it also can play major roles in regulating diverse cellular processes involving F-actin remodeling. Here, we highlight the multifunctional roles of Tmod with a focus on Tmod3. Like other Tmods, Tmod3 binds tropomyosin (Tpm) and actin, capping pure F-actin at submicromolar and Tpm-coated F-actin at nanomolar concentrations. Unlike other Tmods, Tmod3 can also bind actin monomers and its ability to bind actin is inhibited by phosphorylation of Tmod3 by Akt2. Tmod3 is ubiquitously expressed and present in a diverse array of cytoskeletal structures, including contractile structures such as sarcomere-like units of actomyosin stress fibers and in the F-actin network encompassing adherens junctions. Tmod3 participates in F-actin network remodeling in lamellipodia during cell migration, and in the assembly of specialized F-actin networks during exocytosis. Furthermore, Tmod3 is required for development, regulating F-actin mesh formation during meiosis I of mouse oocytes, erythroblast enucleation in definitive erythropoiesis, and megakaryocyte morphogenesis in the mouse fetal liver. Thus, Tmod3 plays vital roles in dynamic and stable F-actin networks in cell physiology and development, with further research required to delineate the mechanistic details of Tmod3 regulation in the aforementioned processes, or in other yet to be discovered processes.


Sign in / Sign up

Export Citation Format

Share Document