scholarly journals Myosin 1b flattens and prunes branched actin filaments

2020 ◽  
Vol 133 (18) ◽  
pp. jcs247403 ◽  
Author(s):  
Julien Pernier ◽  
Antoine Morchain ◽  
Valentina Caorsi ◽  
Aurélie Bertin ◽  
Hugo Bousquet ◽  
...  

ABSTRACTMotile and morphological cellular processes require a spatially and temporally coordinated branched actin network that is controlled by the activity of various regulatory proteins, including the Arp2/3 complex, profilin, cofilin and tropomyosin. We have previously reported that myosin 1b regulates the density of the actin network in the growth cone. Here, by performing in vitro F-actin gliding assays and total internal reflection fluorescence (TIRF) microscopy, we show that this molecular motor flattens (reduces the branch angle) in the Arp2/3-dependent actin branches, resulting in them breaking, and reduces the probability of new branches forming. This experiment reveals that myosin 1b can produce force sufficient enough to break up the Arp2/3-mediated actin junction. Together with the former in vivo studies, this work emphasizes the essential role played by myosins in the architecture and dynamics of actin networks in different cellular regions.This article has an associated First Person interview with the first author of the paper.

2020 ◽  
Author(s):  
Julien Pernier ◽  
Antoine Morchain ◽  
Valentina Caorsi ◽  
Aurélie Bertin ◽  
Hugo Bousquet ◽  
...  

AbstractMotile and morphological cellular processes require a spatially and temporally coordinated branched actin network that is controlled by the activity of various regulatory proteins including the Arp2/3 complex, profilin, cofilin and tropomyosin. We have previously reported that myosin 1b regulates the density of the actin network in the growth cone. Using in vitro F-actin gliding assays and total internal reflection fluorescence (TIRF) microscopy we show in this report that this molecular motor flattens the Arp2/3-dependent actin branches up to breaking them and reduces the probability to form new branches. This experiment reveals that myosin 1b can produce force sufficient enough to break up the Arp2/3-mediated actin junction. Together with the former in vivo studies, this work emphasizes the essential role played by myosins in the architecture and in the dynamics of actin networks in different cellular regions.Short summaryUsing in vitro F-actin gliding assays and total internal reflection fluorescence (TIRF) microscopy we show that myosin flattens the Arp2/3-dependent actin branches up to breaking them and reduces the probability to form new branches


2020 ◽  
Author(s):  
Chiara Galloni ◽  
Davide Carra ◽  
Jasmine V. G. Abella ◽  
Svend Kjær ◽  
Pavithra Singaravelu ◽  
...  

AbstractThe Arp2/3 complex (Arp2, Arp3 and ARPC1-5) is essential to generate branched actin filament networks for many cellular processes. Human Arp3, ARPC1 and ARPC5 exist as two isoforms but the functional properties of Arp2/3 iso-complexes is largely unexplored. Here we show that Arp3B, but not Arp3 is subject to regulation by the methionine monooxygenase MICAL2, which is recruited to branched actin networks by coronin-1C. Although Arp3 and Arp3B iso-complexes promote actin assembly equally efficiently in vitro, they have different cellular properties. Arp3B turns over significantly faster than Arp3 within the network and upon its depletion actin turnover decreases. Substitution of Arp3B Met293 by Thr, the corresponding residue in Arp3 increases actin network stability, and conversely, replacing Arp3 Thr293 with Gln to mimic Met oxidation promotes network disassembly. Thus, MICAL2 regulates a subset of Arp2/3 complexes to control branched actin network disassembly.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Johanna Funk ◽  
Felipe Merino ◽  
Matthias Schaks ◽  
Klemens Rottner ◽  
Stefan Raunser ◽  
...  

AbstractHeterodimeric capping protein (CP/CapZ) is an essential factor for the assembly of branched actin networks, which push against cellular membranes to drive a large variety of cellular processes. Aside from terminating filament growth, CP potentiates the nucleation of actin filaments by the Arp2/3 complex in branched actin networks through an unclear mechanism. Here, we combine structural biology with in vitro reconstitution to demonstrate that CP not only terminates filament elongation, but indirectly stimulates the activity of Arp2/3 activating nucleation promoting factors (NPFs) by preventing their association to filament barbed ends. Key to this function is one of CP’s C-terminal “tentacle” extensions, which sterically masks the main interaction site of the terminal actin protomer. Deletion of the β tentacle only modestly impairs capping. However, in the context of a growing branched actin network, its removal potently inhibits nucleation promoting factors by tethering them to capped filament ends. End tethering of NPFs prevents their loading with actin monomers required for activation of the Arp2/3 complex and thus strongly inhibits branched network assembly both in cells and reconstituted motility assays. Our results mechanistically explain how CP couples two opposed processes—capping and nucleation—in branched actin network assembly.


2016 ◽  
Vol 27 (21) ◽  
pp. 3305-3316 ◽  
Author(s):  
Olivia Muriel ◽  
Alejandra Tomas ◽  
Cameron C. Scott ◽  
Jean Gruenberg

We used in vivo and in vitro strategies to study the mechanisms of multivesicular endosome biogenesis. We found that, whereas annexinA2 and ARP2/3 mediate F-actin nucleation and branching, respectively, the ERM protein moesin supports the formation of F-actin networks on early endosomes. We also found that moesin plays no role during endocytosis and recycling to the plasma membrane but is absolutely required, much like actin, for early-to-late-endosome transport and multivesicular endosome formation. Both actin network formation in vitro and early-to-late endosome transport in vivo also depend on the F-actin–binding protein cortactin. Our data thus show that moesin and cortactin are necessary for formation of F-actin networks that mediate endosome biogenesis or maturation and transport through the degradative pathway. We propose that the primary function of endosomal F-actin is to control the membrane remodeling that accompanies endosome biogenesis. We also speculate that this mechanism helps segregate tubular and multivesicular membranes along the recycling and degradation pathways, respectively.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Andrew R Bassett ◽  
Asifa Akhtar ◽  
Denise P Barlow ◽  
Adrian P Bird ◽  
Neil Brockdorff ◽  
...  

Although a small number of the vast array of animal long non-coding RNAs (lncRNAs) have known effects on cellular processes examined in vitro, the extent of their contributions to normal cell processes throughout development, differentiation and disease for the most part remains less clear. Phenotypes arising from deletion of an entire genomic locus cannot be unequivocally attributed either to the loss of the lncRNA per se or to the associated loss of other overlapping DNA regulatory elements. The distinction between cis- or trans-effects is also often problematic. We discuss the advantages and challenges associated with the current techniques for studying the in vivo function of lncRNAs in the light of different models of lncRNA molecular mechanism, and reflect on the design of experiments to mutate lncRNA loci. These considerations should assist in the further investigation of these transcriptional products of the genome.


2000 ◽  
Vol 113 (16) ◽  
pp. 2821-2827 ◽  
Author(s):  
L. Quarmby

Recent biochemical studies of the AAA ATPase, katanin, provide a foundation for understanding how microtubules might be severed along their length. These in vitro studies are complemented by a series of recent reports of direct in vivo observation of microtubule breakage, which indicate that the in vitro phenomenon of catalysed microtubule severing is likely to be physiological. There is also new evidence that microtubule severing by katanin is important for the production of non-centrosomal microtubules in cells such as neurons and epithelial cells. Although it has been difficult to establish the role of katanin in mitosis, new genetic evidence indicates that a katanin-like protein, MEI-1, plays an essential role in meiosis in C. elegans. Finally, new proteins involved in the severing of axonemal microtubules have been discovered in the deflagellation system of Chlamydomonas.


2004 ◽  
Vol 286 (2) ◽  
pp. F356-F362 ◽  
Author(s):  
John Kanellis ◽  
Roger Bick ◽  
Gabriela Garcia ◽  
Luan Truong ◽  
Chun Chui Tsao ◽  
...  

In macrophages, changes in intracellular calcium have been associated with activation of cellular processes that regulate cell adhesion and motility and are important for the response of macrophages to antigenic stimuli. The mammalian counterpart of the fish calcium-regulating hormone stanniocalcin-1 (STC1) is expressed in multiple organs including the thymus and spleen, and hence, we hypothesized that it may have a role in modulating the immune/inflammatory response. Using murine macrophage-like (RAW264.7) and human monoblast-like (U937) cells to study chemotaxis in vitro, we found that STC1 attenuated chemokinesis and diminished the chemotactic response to monocyte chemotactic protein-1 (MCP-1) and stromal cell-derived factor-1α. Consistent with these findings, STC1 blunted the rise in intracellular calcium following MCP-1 stimulation in RAW264.7 cells. In vivo studies suggested differential expression of STC1 in obstructed kidney and localization to macrophages. MCP-1 and STC1 transcripts were both upregulated following ureteric obstruction, suggesting a functional association between the two genes. Our data suggest a role for mammalian STC1 in modulating the immune/inflammatory response.


2007 ◽  
Vol 18 (1) ◽  
pp. 129-141 ◽  
Author(s):  
Yasunari Takami ◽  
Tatsuya Ono ◽  
Tatsuo Fukagawa ◽  
Kei-ichi Shibahara ◽  
Tatsuo Nakayama

Chromatin assembly factor-1 (CAF-1), a complex consisting of p150, p60, and p48 subunits, is highly conserved from yeast to humans and facilitates nucleosome assembly of newly replicated DNA in vitro. To investigate roles of CAF-1 in vertebrates, we generated two conditional DT40 mutants, respectively, devoid of CAF-1p150 and p60. Depletion of each of these CAF-1 subunits led to delayed S-phase progression concomitant with slow DNA synthesis, followed by accumulation in late S/G2 phase and aberrant mitosis associated with extra centrosomes, and then the final consequence was cell death. We demonstrated that CAF-1 is necessary for rapid nucleosome formation during DNA replication in vivo as well as in vitro. Loss of CAF-1 was not associated with the apparent induction of phosphorylations of S-checkpoint kinases Chk1 and Chk2. To elucidate the precise role of domain(s) in CAF-1p150, functional dissection analyses including rescue assays were preformed. Results showed that the binding abilities of CAF-1p150 with CAF-1p60 and DNA polymerase sliding clamp proliferating cell nuclear antigen (PCNA) but not with heterochromatin protein HP1-γ are required for cell viability. These observations highlighted the essential role of CAF-1–dependent nucleosome assembly in DNA replication and cell proliferation through its interaction with PCNA.


2017 ◽  
Vol 234 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Li Zhang ◽  
XiaoXin Zhang ◽  
Xuejing Zhang ◽  
Yu Lu ◽  
Lei Li ◽  
...  

MicroRNAs (MiRNAs) play important regulatory roles in many cellular processes. MiR-143 is highly enriched in the mouse ovary, but its roles and underlying mechanisms are not well understood. In the current study, we show that miR-143 is located in granulosa cells of primary, secondary and antral follicles. To explore the specific functions of miR-143, we transfected miR-143 inhibitor into primary cultured granulosa cells to study the loss of function of miR-143 and the results showed that miR-143 silencing significantly increased estradiol production and steroidogenesis-related gene expression. Moreover, our in vivo and in vitro studies showed that follicular stimulating hormone (FSH) significantly decreased miR-143 expression. This function of miR-143 is accomplished by its binding to the 3’-UTR of KRAS mRNA. Furthermore, our results demonstrated that miR-143 acts as a negative regulating molecule mediating the signaling pathway of FSH and affecting estradiol production by targeting KRAS. MiR-143 also negatively acts in regulating granulosa cells proliferation and cell cycle-related genes expression. These findings indicate that miR-143 plays vital roles in FSH-induced estradiol production and granulosa cell proliferation, providing a novel mechanism that involves miRNA in regulating granulosa cell functions.


Blood ◽  
1988 ◽  
Vol 71 (2) ◽  
pp. 375-382 ◽  
Author(s):  
J Lotem ◽  
L Sachs

The normal myeloid hematopoietic regulatory proteins include one class of proteins that induces viability and multiplication of normal myeloid precursor cells to form colonies (colony-stimulating factors [CSF] and interleukin 3 [IL-3], macrophage and granulocyte inducing proteins, type 7 [MGI-1]) and another class (called MGI-2) that induces differentiation of normal myeloid precursors without inducing cell multiplication. Different clones of myeloid leukemic cells can differ in their response to these regulatory proteins. One type of leukemic clone can be differentiated in vitro to mature cells by incubating with the growth-inducing proteins granulocyte-macrophage (GM) CSF or IL-3, and another type of clone can be differentiated in vitro to mature cells by the differentiation-inducing protein MGI-2. We have now studied the ability of different myeloid regulatory proteins to induce the in vivo differentiation of these different types of mouse myeloid leukemic clones in normal and cyclophosphamide-treated mice. The results show that in both types of mice (a) the in vitro GM-CSF- and IL- 3-sensitive leukemic cells were induced to differentiate to mature cells in vivo in mice injected with pure recombinant GM-CSF and IL-3 but not with G-CSF, M-CSF, or MGI-2; (b) the in vitro MGI-2-sensitive leukemic cells differentiated in vivo by injection of MGI-2 and also, presumably indirectly, by GM-CSF and IL-3 but not by M-CSF or G-CSF; (c) in vivo induced differentiation of the leukemic cells was associated with a 20- to 60-fold decrease in the number of blast cells; and (d) all the injected myeloid regulatory proteins stimulated the normal myelopoietic system. Different normal myeloid regulatory proteins can thus induce in vivo terminal differentiation of leukemic cells, and it is suggested that these proteins can have a therapeutic potential for myeloid leukemia in addition to their therapeutic potential in stimulating normal hematopoiesis.


Sign in / Sign up

Export Citation Format

Share Document