scholarly journals Evolutionary Emergence of First Animal Organisms Triggered by Environmental Mechano-Biochemical Marine Stimulation

2020 ◽  
Author(s):  
Ngoc Minh Nguyen ◽  
Tatiana Merle ◽  
Florence Broders ◽  
Anne-Christine Brunet ◽  
Florian Sarron ◽  
...  

AbstractThe evolutionary emergence of the first animals is thought to have been intimately associated to the formation of a primitive endomesodermal gut (i.e gastrulation) from ancestral multi-cellular spheres, blastulae, more than 700 million years ago. However, the biochemical cues having been at the origin of endomesoderm formation remain a mystery.Here we find that hydrodynamic mechanical strains developed by sea wavelets on pre-bilaterian Nematostella vectensis and pre-metazoan Choanoeca flexa representatives, which common ancestor dates back to more than 700 million years ago, can trigger gastrulation in a Myo-II dependent mechanotransductive process. Gastrulation in turn induces endomesoderm first biochemical specification through the mechanical activation of the βcat pathway in pre-bilaterian Nematostella vectensis, like in Drosophila and zebrafish embryos, which common ancestor dates back to 600-700 million years ago.These observations converge to animal emergence that has been mechanotransductively triggered by wavelet mechanical strains on the sea-shore in multicellular choanoflagellates through Myo-II more than 700 million years ago, a process achieved in first metazoan through mechanosensitive Y654-containing βcat evolutionary emergence found as conserved in all metazoan.One sentence summaryMarine hydrodynamic strains have activated first gastric organ formation from ancestral pre-animal cell colonies.

2020 ◽  
Author(s):  
Abhinandan Mani Tripathi ◽  
Arie Fridrich ◽  
Magda Lewandowska ◽  
Yehu Moran

ABSTRACTWhile the biogenesis of microRNAs (miRNAs) in both animals and plants depends on Dicer, a conserved RNAse III enzyme, its helping partner proteins are considered distinct for each kingdom. Nevertheless, recent discovery of homologs of Hyponastic Leaves1 (HYL1), a “plant-specific” Dicer partner, in the metazoan phylum Cnidaria challenges the view that miRNAs evolved convergently in animals and plants. Here we show that the HYL1 homolog Hyl1-like a (Hyl1La) is crucial for proper development and miRNA biogenesis in the cnidarian model Nematostella vectensis. Inhibition of Hyl1La resulted in arresting of metamorphosis in Nematostella embryos. Moreover, most miRNAs are significantly downregulated in Hyl1La knockdown animals. These results support the participation of cnidarian HYL1 homologs in miRNA biogenesis and points towards the function of this pathway in cnidarian development. Further, it suggests that the last common ancestor of animals and plants carried a HYL1 homolog that took essential part in miRNA biogenesis.


2005 ◽  
Vol 6 (5-6) ◽  
pp. 277-300 ◽  
Author(s):  
Trevor J. Pemberton ◽  
John E. Kay

The peptidyl-prolylcis/transisomerase (PPIase) class of proteins comprises three member families that are found throughout nature and are present in all the major compartments of the cell. Their numbers appear to be linked to the number of genes in their respective genomes, although we have found the human repertoire to be smaller than expected due to a reduced cyclophilin repertoire. We show here that whilst the members of the cyclophilin family (which are predominantly found in the nucleus and cytoplasm) and the parvulin family (which are predominantly nuclear) are largely conserved between different repertoires, the FKBPs (which are predominantly found in the cytoplasm and endoplasmic reticulum) are not. It therefore appears that the cyclophilins and parvulins have evolved to perform conserved functions, while the FKBPs have evolved to fill ever-changing niches within the constantly evolving organisms. Many orthologous subgroups within the different PPIase families appear to have evolved from a distinct common ancestor, whereas others, such as the mitochondrial cyclophilins, appear to have evolved independently of one another. We have also identified a novel parvulin withinDrosophila melanogasterthat is unique to the fruit fly, indicating a recent evolutionary emergence. Interestingly, the fission yeast repertoire, which contains no unique cyclophilins and parvulins, shares no PPIases solely with the budding yeast but it does share a majority with the higher eukaryotes in this study, unlike the budding yeast. It therefore appears that, in comparison withSchizosaccharomyces pombe, Saccharomyces cerevisiaeis a poor representation of the higher eukaryotes for the study of PPIases.


2020 ◽  
Author(s):  
Cheng-Yi Chen ◽  
Sean A. McKinney ◽  
Lacey R. Ellington ◽  
Matthew C. Gibson

AbstractTwo distinct mechanisms for primordial germ cell (PGC) specification are observed within Bilatera: early determination by maternal factors or late induction by zygotic cues. Here we investigate the molecular basis for PGC specification in Nematostella, a representative pre-bilaterian animal where PGCs arise as paired endomesodermal cell clusters during early development. We first present evidence that the putative PGCs delaminate from the endomesoderm upon feeding, migrate into the gonad primordia, and mature into germ cells. We then show that the PGC clusters arise at the interface between hedgehog1 and patched domains in the developing mesenteries and use gene knockdown, knockout and inhibitor experiments to demonstrate that Hh signaling is required for both PGC specification and general endomesodermal patterning. These results provide evidence that the Nematostella germline is specified by inductive signals rather than maternal factors, and support the existence of zygotically-induced PGCs in the eumetazoan common ancestor.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Cheng-Yi Chen ◽  
Sean A McKinney ◽  
Lacey R Ellington ◽  
Matthew C Gibson

Two distinct mechanisms for primordial germ cell (PGC) specification are observed within Bilatera: early determination by maternal factors or late induction by zygotic cues. Here we investigate the molecular basis for PGC specification in Nematostella, a representative pre-bilaterian animal where PGCs arise as paired endomesodermal cell clusters during early development. We first present evidence that the putative PGCs delaminate from the endomesoderm upon feeding, migrate into the gonad primordia, and mature into germ cells. We then show that the PGC clusters arise at the interface between hedgehog1 and patched domains in the developing mesenteries and use gene knockdown, knockout and inhibitor experiments to demonstrate that Hh signaling is required for both PGC specification and general endomesodermal patterning. These results provide evidence that the Nematostella germline is specified by inductive signals rather than maternal factors, and support the existence of zygotically-induced PGCs in the eumetazoan common ancestor.


2017 ◽  
Vol 12 (7) ◽  
pp. 497-499
Author(s):  
Kalimuthu Kalishwaralal ◽  
Subhaschandrabose Jeyabharathi ◽  
Krishnan Sundar ◽  
Azhaguchamy Muthukumaran

In many rice producing countries of the world, including in Vietnam, various research aimed at using rice husk ash (RHA) as a finely dispersed active mineral additive in cements, concrete and mortars are being conducted. The effect of the duration of the mechanoactivation of the RHA, produced under laboratory conditions in Vietnam, on its pozzolanic activity were investigated in this study. The composition of ash was investigated by laser granulometry and the values of indicators characterizing the dispersion of its particles before and after mechanical activation were established. The content of soluble amorphous silicon oxide in rice husk ash samples was determined by photocolorimetric analysis. The pizzolanic activity of the RHA, fly ash and the silica fume was also compared according to the method of absorption of the solution of the active mineral additive. It is established that the duration of the mechanical activation of rice husk ash by grinding in a vibratory mill is optimal for increasing its pozzolanic activity, since it simultaneously results in the production of the most dispersed ash particles with the highest specific surface area and maximum solubility of the amorphous silica contained in it. Longer grinding does not lead to further reduction in the size of ash particles, which can be explained by their aggregation, and also reduces the solubility of amorphous silica in an aqueous alkaline medium.


Sign in / Sign up

Export Citation Format

Share Document