scholarly journals The Behavior of Molecular Measures of Natural Selection after a Change in Population Size

2020 ◽  
Author(s):  
Rebekka Müller ◽  
Ingemar Kaj ◽  
Carina F. Mugal

ABSTRACTA common model to describe natural selection at the molecular level is the nearly neutral theory, which emphasizes the importance of mutations with slightly deleterious fitness effects as they have a chance to get fixed due to genetic drift. Since genetic drift is stronger in smaller than in larger populations, a negative relationship between molecular measures of selection and population size is expected within the nearly neutral theory. Originally, this hypothesis was formulated under equilibrium conditions. A change in population size, however, pushes the selection-drift balance off equilibrium leading to alterations in the efficacy of selection. To investigate the nonequilibrium behavior, we relate measures of natural selection and genetic drift to each other, considering both, measures of micro- and macroevolution. Specifically, we use a Poisson random field framework to model πN/πS and ω as time-dependent measures of selection and assess genetic drift by an effective population size. This analysis reveals a clear deviation from the expected equilibrium selection-drift balance during nonequilibrium periods. Moreover, we find that microevolutionary measures quickly react to a change in population size and reflect a recent change well, at the same time as they quickly lose the knowledge about it. Macroevolutionary measures, on the other hand, react more slowly to a change in population size but instead capture the influence of ancient changes longer. We therefore conclude that it is important to be aware of the different behaviors of micro- and macroevo- lutionary measures when making inference in empirical studies, in particular when comparing results between studies.

2018 ◽  
Author(s):  
A.P. Jason de Koning ◽  
Bianca D. De Sanctis

AbstractOne of the most fundamental rules of molecular evolution is that the rate of neutral evolution equals the mutation rate and is independent of effective population size. This result lies at the heart of the Neutral Theory, and is the basis for numerous analytic approaches that are widely applied to infer the action of natural selection across the genome and through time, and for dating divergence events using the molecular clock. However, this result was derived under the assumption that evolution is strongly mutation-limited, and it has not been known whether it generalizes across the range of mutation pressures or the spectrum of mutation types observed in natural populations. Validated by both simulations and exact computational analyses, we present a direct and transparent theoretical analysis of the Wright-Fisher model of population genetics, which shows that some of the most important rules of molecular evolution are fundamentally changed by considering recurrent mutation’s full effect. Surprisingly, the rate of the neutral molecular clock is found to have population-size dependence and to not equal the mutation rate in general. This is because, for increasing values of the population mutation rate parameter (θ), the time spent waiting for mutations quickly becomes smaller than the cumulative time mutants spend segregating before a substitution, resulting in a net deceleration compared to classical theory that depends on the population mutation rate. Furthermore, selection exacerbates this effect such that more adaptive alleles experience a greater deceleration than less adaptive alleles, introducing systematic bias in a wide variety of methods for inferring the strength and direction of natural selection from across-species sequence comparisons. Critically, the classical weak mutation approximation performs well only when θ< 0.1, a threshold that many biological populations seem to exceed.


Lankesteriana ◽  
2016 ◽  
Vol 3 (2) ◽  
Author(s):  
Raymond L. Tremblay

<div class="page" title="Page 1"><div class="layoutArea"><div class="column"><p><span>Evolution through either natural selection or genetic drift is dependent on variation at the genetic and mor- phological levels. Processes that influence the genetic structure of populations include mating systems, effective population size, mutation rates and gene flow among populations. </span></p></div></div></div>


2020 ◽  
Vol 12 (2) ◽  
pp. 3803-3817 ◽  
Author(s):  
Xi Wang ◽  
Carolina Bernhardsson ◽  
Pär K Ingvarsson

Abstract Under the neutral theory, species with larger effective population size are expected to harbor higher genetic diversity. However, across a wide variety of organisms, the range of genetic diversity is orders of magnitude more narrow than the range of effective population size. This observation has become known as Lewontin’s paradox and although aspects of this phenomenon have been extensively studied, the underlying causes for the paradox remain unclear. Norway spruce (Picea abies) is a widely distributed conifer species across the northern hemisphere, and it consequently plays a major role in European forestry. Here, we use whole-genome resequencing data from 35 individuals to perform population genomic analyses in P. abies in an effort to understand what drives genome-wide patterns of variation in this species. Despite having a very wide geographic distribution and an corresponding enormous current population size, our analyses find that genetic diversity of P. abies is low across a number of populations (π = 0.0049 in Central-Europe, π = 0.0063 in Sweden-Norway, π = 0.0063 in Finland). To assess the reasons for the low levels of genetic diversity, we infer the demographic history of the species and find that it is characterized by several reoccurring bottlenecks with concomitant decreases in effective population size can, at least partly, provide an explanation for low polymorphism we observe in P. abies. Further analyses suggest that recurrent natural selection, both purifying and positive selection, can also contribute to the loss of genetic diversity in Norway spruce by reducing genetic diversity at linked sites. Finally, the overall low mutation rates seen in conifers can also help explain the low genetic diversity maintained in Norway spruce.


2019 ◽  
Author(s):  
Mathieu Brevet ◽  
Nicolas Lartillot

AbstractThe nearly-neutral theory predicts specific relations between effective population size (Ne), and patterns of divergence and polymorphism, which depend on the shape of the distribution of fitness effects (DFE) of new mutations. However, testing these relations is not straightforward since Ne is difficult to estimate in practice. For that reason, indirect proxies for Ne have often been used to test the nearly-neutral theory, although with mixed results. Here, we introduce an integrative comparative framework allowing for an explicit reconstruction of the phylogenetic history of Ne, thus leading to a quantitative test of the nearly-neutral theory and an independent estimation of the shape parameter of the DFE. We applied our method to primates, for which the nearly-neutral predictions were mostly verified. Estimates of the shape parameter were compatible with independent measures based on site frequency spectra. The reconstructed history of Ne in primates seems consistent with current knowledge and shows a clear phylogenetic structure at the super-family level. Altogether, our integrative framework provides a quantitative assessment of the role of Ne in modulating patterns of genetic variation, while giving a synthetic picture of the long-term trends in Ne variation across a group of species.


Author(s):  
Nahid Shokri Bousjein ◽  
Simon Tierney ◽  
Michael Gardner ◽  
Michael Schwarz

Adaptive evolutionary theory argues that organisms with larger effective population size (Ne) should have higher rates of adaptive evolution and therefore greater capacity to win evolutionary arm races. However, in some certain cases species with much smaller Ne may be able to survive beside their opponents for an extensive evolutionary time. Neutral theory predicts that accelerated rates of molecular evolution in organisms with exceedingly small Ne is due to the effects of genetic drift and fixation of slightly deleterious mutations. We test this prediction in two obligate social parasite species and their respective host species from the bee tribe Allodapini. The parasites (genus Inquilina) have been locked into a tight coevolutionary arm races with their exclusive hosts (genus Exoneura) for ~15 million years, even though Inquilina exhibit Ne that are an order of magnitude smaller than their host. In this study, we compared rates of molecular evolution between host and parasite using nonsynonymous to synonymous substitution rate ratios (dN/dS) of eleven mitochondrial protein coding genes sequenced from transcriptomes. Tests of selection on mitochondrial genes indicated no significant differences between host and parasite dN/dS, with evidence for purifying selection acting on all mitochondrial genes of host and parasite species. Several potential factors which could weaken the inverse relationship between Ne and rate of molecular evolution are discussed.


Author(s):  
Christian M. Reidys

The fundamental mechanisms of biological evolution have fascinated generations of researchers and remain popular to this day. The formulation of such a theory goes back to Darwin (1859), who in the The Origin of Species presented two fundamental principles: genetic variability caused by mutation, and natural selection. The first principle leads to diversity and the second one to the concept of survival of the fittest, where fitness is an inherited characteristic property of an individual and can basically be identified with its reproduction rate. Wright [530, 531] first recognized the importance of genetic drift in evolution in improving the evolutionary search capacity of the whole population. He viewed genetic drift merely as a process that could improve evolutionary search. About a decade later, Kimura proposed [317] that the majority of changes that are observed in evolution at the molecular level are the results of random drift of genotypes. The neutral theory of Kimura does not deny that selection plays a role, but claims that no appreciable fraction of observable molecular change can be caused by selective forces: mutations are either a disadvantage or, at best, neutral in present day organisms. Only negative selection plays a major role in the neutral evolution, in that deleterious mutants die out due to their lower fitness. Over the last few decades, there has been a shift of emphasis in the study of evolution. Instead of focusing on the differences in the selective value of mutants and on population genetics, interest has moved to evolution through natural selection as an abstract optimization problem. Given the tremendous opportunities that computer science and the physical sciences now have for contributing to the study of biological phenomena, it is fitting to study the evolutionary optimization problem in the present volume. In this chapter, we adopt the following framework: assuming that selection acts exclusively upon isolated phenotypes, we introduce the following compositum of mappings . . . Genotypes→ Phenotypes →Fitness . . . . We will refer to the first map as to the genotype-phenotype map and call the preimage of a given phenotype its neutral network. Clearly, the main ingredients here are the phenotypes and genotypes and their respective organization. In the following we will study various combinatorial properties of phenotypes and genotypes for RNA folding maps.


2020 ◽  
Vol 38 (1) ◽  
pp. 244-262
Author(s):  
Alexander T Ho ◽  
Laurence D Hurst

Abstract In correctly predicting that selection efficiency is positively correlated with the effective population size (Ne), the nearly neutral theory provides a coherent understanding of between-species variation in numerous genomic parameters, including heritable error (germline mutation) rates. Does the same theory also explain variation in phenotypic error rates and in abundance of error mitigation mechanisms? Translational read-through provides a model to investigate both issues as it is common, mostly nonadaptive, and has good proxy for rate (TAA being the least leaky stop codon) and potential error mitigation via “fail-safe” 3′ additional stop codons (ASCs). Prior theory of translational read-through has suggested that when population sizes are high, weak selection for local mitigation can be effective thus predicting a positive correlation between ASC enrichment and Ne. Contra to prediction, we find that ASC enrichment is not correlated with Ne. ASC enrichment, although highly phylogenetically patchy, is, however, more common both in unicellular species and in genes expressed in unicellular modes in multicellular species. By contrast, Ne does positively correlate with TAA enrichment. These results imply that local phenotypic error rates, not local mitigation rates, are consistent with a drift barrier/nearly neutral model.


2010 ◽  
Vol 90 (3) ◽  
pp. 331-340 ◽  
Author(s):  
M G Melka ◽  
F. Schenkel

Conservation of animal genetic resources entails judicious assessment of genetic diversity as a first step. The objective of this study was to analyze the trend of within-breed genetic diversity and identify major causes of loss of genetic diversity in four swine breeds based on pedigree data. Pedigree files from Duroc (DC), Hampshire (HP), Lacombe (LC) and Landrace (LR) containing 480 191, 114 871, 51 397 and 1 080 144 records, respectively, were analyzed. Pedigree completeness, quality and depth were determined. Several parameters derived from the in-depth pedigree analyses were used to measure trends and current levels of genetic diversity. Pedigree completeness indexes of the four breeds were 90.4, 52.7, 89.6 and 96.1%, respectively. The estimated percentage of genetic diversity lost within each breed over the last three decades was approximately 3, 22, 12 and 2%, respectively. The relative proportion of genetic diversity lost due to random genetic drift in DC, HP, LC and LR was 74.5, 63.6, 72.9 and 60.0%, respectively. The estimated current effective population size for DC, HP, LC and LR was 72, 14, 36 and 125, respectively. Therefore, HP and LC have been found to have lost considerable genetic diversity, demanding priority for conservation. Key words: Genetic drift, effective population size


2021 ◽  
Author(s):  
Anjali Mahilkar ◽  
Sharvari Kemkar ◽  
Supreet Saini

AbstractMutations provide the raw material for natural selection to act. Therefore, understanding the variety and relative frequency of different type of mutations is critical to understanding the nature of genetic diversity in a population. Mutation accumulation (MA) experiments have been used in this context to estimate parameters defining mutation rates, distribution of fitness effects (DFE), and spectrum of mutations. MA experiments performed with organisms such asDrosophilahave an effective population size of one. However, in MA experiments with bacteria and yeast, a single founder is allowed to grow to a size of a colony (~108). The effective population size in these experiments is of the order of 10. In this scenario, while it is assumed that natural selection plays a minimal role in dictating the dynamics of colony growth and therefore, the MA experiment; this effect has not been tested explicitly. In this work, we simulate colony growth and perform an MA experiment, and demonstrate that selection ensures that, in an MA experiment, fraction of all mutations that are beneficial is over represented by a factor greater than two. The DFE of beneficial and deleterious mutations are accurately captured in an MA experiment. We show that the effect of selection in a growing colony varies non-monotonically and that, in the face of natural selection dictating an MA experiment, estimates of mutation rate of an organism is not trivial. We perform experiments with 160 MA lines ofE. coli, and demonstrate that rate of change of mean fitness is a non-monotonic function of the colony size, and that selection acts differently in different sectors of a growing colony. Overall, we demonstrate that the results of MA experiments need to be revisited taking into account the action of selection in a growing colony.


Genetics ◽  
1992 ◽  
Vol 130 (4) ◽  
pp. 909-916 ◽  
Author(s):  
A Caballero ◽  
W G Hill

Abstract Nonrandom mating whereby parents are related is expected to cause a reduction in effective population size because their gene frequencies are correlated and this will increase the genetic drift. The published equation for the variance effective size, Ne, which includes the possibility of nonrandom mating, does not take into account such a correlation, however. Further, previous equations to predict effective sizes in populations with partial sib mating are shown to be different, but also incorrect. In this paper, a corrected form of these equations is derived and checked by stochastic simulation. For the case of stable census number, N, and equal progeny distributions for each sex, the equation is [formula: see text], where Sk2 is the variance of family size and alpha is the departure from Hardy-Weinberg proportions. For a Poisson distribution of family size (Sk2 = 2), it reduces to Ne = N/(1 + alpha), as when inbreeding is due to selfing. When nonrandom mating occurs because there is a specified system of partial inbreeding every generation, alpha can be substituted by Wright's FIS statistic, to give the effective size as a function of the proportion of inbred mates.


Sign in / Sign up

Export Citation Format

Share Document