scholarly journals Demography and Natural Selection Have Shaped Genetic Variation in the Widely Distributed Conifer Norway Spruce (Picea abies)

2020 ◽  
Vol 12 (2) ◽  
pp. 3803-3817 ◽  
Author(s):  
Xi Wang ◽  
Carolina Bernhardsson ◽  
Pär K Ingvarsson

Abstract Under the neutral theory, species with larger effective population size are expected to harbor higher genetic diversity. However, across a wide variety of organisms, the range of genetic diversity is orders of magnitude more narrow than the range of effective population size. This observation has become known as Lewontin’s paradox and although aspects of this phenomenon have been extensively studied, the underlying causes for the paradox remain unclear. Norway spruce (Picea abies) is a widely distributed conifer species across the northern hemisphere, and it consequently plays a major role in European forestry. Here, we use whole-genome resequencing data from 35 individuals to perform population genomic analyses in P. abies in an effort to understand what drives genome-wide patterns of variation in this species. Despite having a very wide geographic distribution and an corresponding enormous current population size, our analyses find that genetic diversity of P. abies is low across a number of populations (π = 0.0049 in Central-Europe, π = 0.0063 in Sweden-Norway, π = 0.0063 in Finland). To assess the reasons for the low levels of genetic diversity, we infer the demographic history of the species and find that it is characterized by several reoccurring bottlenecks with concomitant decreases in effective population size can, at least partly, provide an explanation for low polymorphism we observe in P. abies. Further analyses suggest that recurrent natural selection, both purifying and positive selection, can also contribute to the loss of genetic diversity in Norway spruce by reducing genetic diversity at linked sites. Finally, the overall low mutation rates seen in conifers can also help explain the low genetic diversity maintained in Norway spruce.

2019 ◽  
Author(s):  
Xi Wang ◽  
Carolina Bernhardsson ◽  
Pär K. Ingvarsson

AbstractUnder the neutral theory, species with larger effective population sizes are expected to harbour higher genetic diversity. However, across a wide variety of organisms, the range of genetic diversity is orders of magnitude more narrow than the range of effective population size. This observation has become known as Lewontin’s paradox and although aspects of this phenomenon have been extensively studied, the underlying causes for the paradox remain unclear. Norway spruce (Picea abies) is a widely distributed conifer species across the northern hemisphere and it consequently plays a major role in European forestry. Here, we use whole-genome re-sequencing data from 35 individuals to perform population genomic analyses in P. abies in an effort to understand what drives genome-wide patterns of variation in this species. Despite having a very wide geographic distribution and an enormous current population size, our analyses find that genetic diversity of P.abies is low across a number of populations (p=0.005-0.006). To assess the reasons for the low levels of genetic diversity, we infer the demographic history of the species and find that it is characterised by several re-occurring bottlenecks with concomitant decreases in effective population size can, at least partly, provide an explanation for low polymorphism we observe in P. abies. Further analyses suggest that recurrent natural selection, both purifying and positive selection, can also contribute to the loss of genetic diversity in Norway spruce by reducing genetic diversity at linked sites. Finally, the overall low mutation rates seen in conifers can also help explain the low genetic diversity maintained in Norway spruce.


2016 ◽  
Vol 65 (1) ◽  
pp. 59-66 ◽  
Author(s):  
Y. C. Miao ◽  
Z. J. Zhang ◽  
J. R. Su

Abstract Taxus yunnanensis, which is an endangered tree that is considered valuable because it contains the effective natural anticancer metabolite taxol and heteropolysaccharides, has long suffered from severe habitat fragmentation. In this study, the levels of genetic diversity in two populations of 136 individuals were analyzed based on eleven polymorphic microsatellite loci. Our results suggested that these two populations were characterized by low genetic diversity (NE = 2.303/2.557; HO = 0.168/0.142; HE = 0.453/0.517), a population bottleneck, a low effective population size (Ne = 7/9), a high level of inbreeding (FIS = 0.596/0.702), and a weak, but significant spatial genetic structure (Sp = 0.001, b = −0.001*). Habitat fragmentation, seed shadow overlap and limited seed and pollen dispersal and potential selfing may have contributed to the observed gene tic structure. The results of the present study will enable development of practical conservation measures to effectively conserve the valuable genetic resources of this endangered plant.


Animals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 361 ◽  
Author(s):  
Shuqi Diao ◽  
Shuwen Huang ◽  
Zhiting Xu ◽  
Shaopan Ye ◽  
Xiaolong Yuan ◽  
...  

To investigate the genetic diversity, population structure, extent of linkage disequilibrium (LD), effective population size (Ne), and selection signatures in indigenous pigs from Guangdong and Guangxi in China, 226 pigs belonging to ten diverse populations were genotyped using single nucleotide polymorphism (SNP) chips. The genetic divergence between Chinese and Western pigs was determined based on the SNP chip data. Low genetic diversity of Dahuabai (DHB), Luchuan (LC), Lantang (LT), and Meihua (MH) pigs, and introgression of Western pigs into Longlin (LL), MH, and Yuedonghei (YDH) pigs were detected. Analysis of the extent of LD showed that indigenous pigs had low LD when pairwise SNP distance was short and high LD when pairwise SNP distance was long. Effective population size analysis showed a rapid decrease for Chinese indigenous pigs, and some pig populations had a relatively small Ne. This result indicated the loss of genetic diversity in indigenous pigs, and introgression from Western commercial pigs. Selection signatures detected in this study overlapped with meat quality traits, such as drip loss, intramuscular fat content, meat color b*, and average backfat thickness. Our study deepened understanding of the conservation status and domestication of Chinese indigenous pigs.


2017 ◽  
Vol 38 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Victoria Sophia Farrar ◽  
Taylor Edwards ◽  
Kevin Edward Bonine

Population genetic baselines for species perceived to be at-risk are crucial for monitoring population trends and making well-informed management decisions. We characterized the genetic status of a population of Gila monsters (Heloderma suspectum), a large venomous lizard native to deserts of the southwestern United States and northern Mexico, by sampling 100 individuals in Sonoran Desert upland habitat at Saguaro National Park, Arizona, USA. We used 18 microsatellite markers, along with 1195 bp of sequence data from the mitochondrial DNA 12S locus, to examine genetic diversity, estimate effective population size, and assess demographic history. Despite suburban development adjacent to the study area, we observed high genetic diversity with uninhibited gene flow within this protected population. We estimated effective population size (Ne) for the total sample area (80 km2) using the linkage disequilibrium method in NeEstimator to be 94 individuals (95% confidence interval: 80.7-111.2). In 2011, we used capture-recapture methods to estimate that 80 adult Gila monsters (95% CI = 37-225) inhabited the area along the 14-km transect that we surveyed most frequently; probability of detecting resident Gila monsters during surveys was <0.01, highlighting the challenges of studying the species. Despite being considered an elusive and thus potentially rare species, these data reveal that in this protected environment the population appears healthy and robust. The results provide an important genetic baseline for future studies and monitoring, and exemplify the success of protective population measures in National Parks and under Arizona state laws.


2016 ◽  
Author(s):  
Julie Jacquemin ◽  
Nora Hohmann ◽  
Matteo Buti ◽  
Alberto Selvaggi ◽  
Thomas Müller ◽  
...  

AbstractTheory predicts that a small effective population size leads to slower accumulation of mutations, increased levels of genetic drift and reduction in the efficiency of natural selection. Therefore endemic species should harbor low levels of genetic diversity and exhibit a reduced ability of adaptation to environmental changes.Arabidopsis pedemontanaandArabidopsis cebennensis, two endemic species from Italy and France respectively, provide an excellent model to study the adaptive potential of species with small distribution ranges. To evaluate the genome-wide levels and patterns of genetic variation, effective population size and demographic history of both species, we genotyped 53A. pedemontanaand 28A. cebennensisindividuals across the entire species ranges with Genotyping-by-Sequencing. SNPs data confirmed a low genetic diversity forA. pedemontanaalthough its effective population size is relatively high. Only a weak population structure was observed over the small distribution range ofA. pedemontana, resulting from an isolation-by-distance pattern of gene flow. In contrary,A. cebennensisindividuals clustered in three populations according to their geographic distribution. Despite this and a larger distribution, the overall genetic diversity was even lower forA. cebennensisthan forA. pedemontana.A demographic analysis demonstrated that both endemics have undergone a strong population size decline in the past, without recovery. The more drastic decline observed inA. cebennensispartially explains the very small effective population size observed in the present population. In light of these results, we discuss the adaptive potential of these endemic species in the context of rapid climate change.


2021 ◽  
Author(s):  
Sergio A Gonzalez-Mollinedo ◽  
Thomas Schrei ◽  
Brad Locke

In this study, samples from 33 Guatemalan Beaded Lizard (Heloderma charlesbogerti) were analyzed for genetic diversity. Twenty-three samples were obtained from wild individuals from two separate population areas, and 10 samples were obtained from captive individuals. Because the seasonally dry tropical forest habitat sampled for this study, is degraded and fragmented, it was hypothesized that beaded lizard populations were small and isolated and would be subject to genetic erosion and an elevated extinction risk. To test this hypothesis, eight microsatellite markers were employed to analyze 22 individual samples from the population of Cabanas, Zacapa, a single individual from the eastern-most population and 10 captive individuals of unknown origin. An average of three alleles per maker was reported for the Cabanas population, evidencing a low genetic diversity. In addition, a recent bottleneck event was detected and an effective population size of 19.6 was estimated. Demographic reconstruction using a Bayesian approach was inconclusive possibly due to a small dataset and shallow coalescence trees obtained with the generated data. No clear structuring pattern was detected for the Cabanas population and most samples from individuals in captivity were found to have similar alleles to the ones from Cabanas. Population designation is challenging without the genotyping of every wild population, but unique alleles were found in captive individuals of unknown origin that could suggest that different genotypes might exist within other, less studied, wild populations. Low genetic diversity, and a small effective population size represent a risk for the Cabanas population facing the threats of isolation, habitat loss and climate change. These findings suggest that genetic management of the Cabanas population might be utilized to avoid high rates of inbreeding and subsequent inbreeding depression.


2009 ◽  
Vol 91 (6) ◽  
pp. 395-412 ◽  
Author(s):  
NATACHA NIKOLIC ◽  
JAMES R. A. BUTLER ◽  
JEAN-LUC BAGLINIÈRE ◽  
ROBERT LAUGHTON ◽  
IAIN A. G. McMYN ◽  
...  

SummaryEffective population size (Ne) is an important parameter in the conservation of genetic diversity. Comparative studies of empirical data that gauge the relative accuracy of Ne methods are limited, and a better understanding of the limitations and potential of Ne estimators is needed. This paper investigates genetic diversity and Ne in four populations of wild anadromous Atlantic salmon (Salmo salar L.) in Europe, from the Rivers Oir and Scorff (France) and Spey and Shin (Scotland). We aimed to understand present diversity and historical processes influencing current population structure. Our results showed high genetic diversity for all populations studied, despite their wide range of current effective sizes. To improve understanding of high genetic diversity observed in the populations with low effective size, we developed a model predicting present diversity as a function of past demographic history. This suggested that high genetic diversity could be explained by a bottleneck occurring within recent centuries rather than by gene flow. Previous studies have demonstrated the efficiency of coalescence models to estimate Ne. Using nine subsets from 37 microsatellite DNA markers from the four salmon populations, we compared three coalescence estimators based on single and dual samples. Comparing Ne estimates confirmed the efficiency of increasing the number and variability of microsatellite markers. This efficiency was more accentuated for the smaller populations. Analysis with low numbers of neutral markers revealed uneven distributions of allelic frequencies and overestimated short-term Ne. In addition, we found evidence of artificial stock enhancement using native and non-native origin. We propose estimates of Ne for the four populations, and their applications for salmon conservation and management are discussed.


2021 ◽  
Vol 78 (2) ◽  
Author(s):  
Błażej Wójkiewicz ◽  
Andrzewj Lewandowski ◽  
Weronika B. Żukowska ◽  
Monika Litkowiec ◽  
Witold Wachowiak

Abstract Context Black poplar (Populus nigra L.) is a keystone species of European riparian ecosystems that has been negatively impacted by riverside urbanization for centuries. Consequently, it has become an endangered tree species in many European countries. The establishment of a suitable rescue plan of the remaining black poplar forest stands requires a preliminary knowledge about the distribution of genetic variation among species populations. However, for some parts of the P. nigra distribution in Europe, the genetic resources and demographic history remain poorly recognized. Aims Here, we present the first study on identifying and characterizing the genetic resources of black poplar from the Oder valley in Poland. This study (1) assessed the genetic variability and effective population size of populations and (2) examined whether gene flow is limited by distance or there is a single migrant pool along the studied river system. Methods A total of 582 poplar trees derived from nine black poplar populations were investigated with nuclear microsatellite markers. Results (1) The allelic richness and heterozygosity level were high and comparable between populations. (2) The genetic structure of the studied poplar stands was not homogenous. (3) The signatures of past bottlenecks were detected. Conclusion Our study (1) provides evidence for genetic substructuring of natural black poplar populations from the studied river catchment, which is not a frequent phenomenon reported for this species in Europe, and (2) indicates which poplar stands may serve as new genetic conservation units (GCUs) of this species in Europe. Key message The genetic resources of black poplar in the Oder River valley are still substantial compared to those reported for rivers in Western Europe. On the other hand, clear signals of isolation by distance and genetic erosion reflected in small effective population sizes and high spatial genetic structure of the analyzed populations were detected. Based on these findings, we recommend the in situ and ex situ conservation strategies for conserving and restoring the genetic resources of black poplar populations in this strongly transformed by human river valley ecosystem.


Sign in / Sign up

Export Citation Format

Share Document