scholarly journals Distinct molecular pathways govern presynaptic homeostatic plasticity

2020 ◽  
Author(s):  
Anu G. Nair ◽  
Paola Muttathukunnel ◽  
Martin Müller

AbstractPresynaptic homeostatic plasticity (PHP) stabilizes synaptic transmission by counteracting impaired neurotransmitter receptor function through increased presynaptic release. PHP is thought to be triggered by impaired receptor function, and to involve a stereotypic signaling pathway. However, here we demonstrate that different receptor perturbations that similarly impair synaptic activity result in vastly different responses at the Drosophila neuromuscular junction. While competitive receptor inhibition is not compensated by PHP, receptor pore block and allosteric inhibition induce compensatory PHP. Intriguingly, PHP triggered by receptor pore block and allosteric inhibition involve distinct presynaptic adaptations, including differential modulation of the active-zone scaffold Bruchpilot and short-term plasticity. Moreover, while PHP upon allosteric receptor inhibition does not require molecules underlying pore-block induced PHP (RIM and dysbindin), it is promoted by presynaptic Protein Kinase D. Thus, synapses not only respond differentially to similar activity impairments, but achieve homeostatic compensation via distinct mechanisms, highlighting the diversity of homeostatic signaling.

Author(s):  
Joseph P. Steiner ◽  
Kathryn B. Payne ◽  
Christopher Drummond Main ◽  
Sabrina D'Alfonso ◽  
Kirsten X. Jacobsen ◽  
...  

Background:Previously we showed that 6-hydroxydopamine lesions of the substantia nigra eliminate corticostriatal LTP and that the neuroimmunolophilin ligand (NIL), GPI-1046, restores LTP.Methods:We used cDNA microarrays to determine what mRNAs may be over- or under-expressed in response to lesioning and/or GPI-1046 treatment. Patch clamp recordings were performed to investigate changes in NMDA channel function before and after treatments.Results:We found that 51 gene products were differentially expressed. Among these we found that GPI-1046 treatment up-regulated presenilin-1 (PS-1) mRNA abundance. This finding was confirmed using QPCR. PS-1 protein was also shown to be over-expressed in the striatum of lesioned/GPI-1046-treated rats. As PS-1 has been implicated in controlling NMDA-receptor function and LTP is reduced by lesioning we assayed NMDA mediated synaptic activity in striatal brain slices. The lesion-induced reduction of dopaminergic innervation was accompanied by the near complete loss of NDMA receptor-mediated synaptic transmission between the cortex and striatum. GPI-1046 treatment of the lesioned rats restored NMDA-mediated synaptic transmission but not the dopaminergic innervation. Restoration of NDMA channel function was apparently specific as the sodium channel current density was also reduced due to lesioning but GPI-1046 did not reverse this effect. We also found that restoration of NMDA receptor function was also not associated with either an increase in NMDA receptor mRNA or protein expression.Conclusion:As it has been previously shown that PS-1 is critical for normal NMDA receptor function, our data suggest that the improvement of excitatory neurotransmission occurs through the GPI-1046-induced up-regulation of PS-1.


2018 ◽  
Vol 115 (47) ◽  
pp. E11168-E11177 ◽  
Author(s):  
Iksung Jin ◽  
Hiroshi Udo ◽  
Russell Nicholls ◽  
Huixiang Zhu ◽  
Eric R. Kandel ◽  
...  

Whereas short-term plasticity is often initiated on one side of the synapse, long-term plasticity involves coordinated changes on both sides, implying extracellular signaling. We have investigated the possible signaling role of an Aplysia neurotrophin (ApNT) in facilitation induced by serotonin (5HT) at sensory-to-motor neuron synapses in culture. ApNT is an ortholog of mammalian BDNF, which has been reported to act as either an anterograde, retrograde, or autocrine signal, so that its pre- and postsynaptic sources and targets remain unclear. We now report that ApNT acts as a presynaptic autocrine signal that forms part of a positive feedback loop with ApTrk and PKA. That loop stimulates spontaneous transmitter release, which recruits postsynaptic mechanisms, and presynaptic protein synthesis during the transition from short- to intermediate-term facilitation and may also initiate gene regulation to trigger the transition to long-term facilitation. These results suggest that a presynaptic ApNT feedback loop plays several key roles during consolidation of learning-related synaptic plasticity.


2007 ◽  
Vol 97 (1) ◽  
pp. 948-950 ◽  
Author(s):  
Jane M. Sullivan

Paired-pulse depression (PPD) is a form of short-term plasticity that plays a central role in processing of synaptic activity and is manifest as a decrease in the size of the response to the second of two closely timed stimuli. Despite mounting evidence to the contrary, PPD is still commonly thought to reflect depletion of the pool of synaptic vesicles available for release in response to the second stimulus. Here it is shown that PPD cannot be accounted for by depletion at excitatory synapses made by hippocampal neurons because PPD is unaffected by changes in the fraction of the readily releasable pool (RRP) released by the first of a pair of pulses.


2016 ◽  
Vol 2016 ◽  
pp. 1-19 ◽  
Author(s):  
Sung-Soo Jang ◽  
Hee Jung Chung

Alzheimer’s disease (AD) is an irreversible brain disorder characterized by progressive cognitive decline and neurodegeneration of brain regions that are crucial for learning and memory. Although intracellular neurofibrillary tangles and extracellular senile plaques, composed of insoluble amyloid-β(Aβ) peptides, have been the hallmarks of postmortem AD brains, memory impairment in early AD correlates better with pathological accumulation of soluble Aβoligomers and persistent weakening of excitatory synaptic strength, which is demonstrated by inhibition of long-term potentiation, enhancement of long-term depression, and loss of synapses. However, current, approved interventions aiming to reduce Aβlevels have failed to retard disease progression; this has led to a pressing need to identify and target alternative pathogenic mechanisms of AD. Recently, it has been suggested that the disruption of Hebbian synaptic plasticity in AD is due to aberrant metaplasticity, which is a form of homeostatic plasticity that tunes the magnitude and direction of future synaptic plasticity based on previous neuronal or synaptic activity. This review examines emerging evidence for aberrant metaplasticity in AD. Putative mechanisms underlying aberrant metaplasticity in AD will also be discussed. We hope this review inspires future studies to test the extent to which these mechanisms contribute to the etiology of AD and offer therapeutic targets.


2011 ◽  
Vol 106 (1) ◽  
pp. 193-201 ◽  
Author(s):  
Erika D. Nelson ◽  
Manjot Bal ◽  
Ege T. Kavalali ◽  
Lisa M. Monteggia

An imbalance between the strengths of excitatory and inhibitory synaptic inputs has been proposed as the cellular basis of autism and related neurodevelopmental disorders. Previous studies examining spontaneous levels of excitatory and inhibitory neurotransmission in the forebrain regions of methyl-CpG-binding protein 2 ( Mecp2) mutant mice, models of the autism spectrum disorder Rett syndrome, have identified a decrease in excitatory drive, in some cases coupled with an increase in inhibitory synaptic strength, as a major source of this imbalance. Here, we reevaluated this question by examining the short-term dynamics of evoked neurotransmission between hippocampal neurons cultured from MeCP2 knockout mice and found a marked increase in evoked excitatory neurotransmission that is consistent with an increase in presynaptic release probability. This increase in evoked excitatory drive was not matched with alterations in evoked inhibitory neurotransmission. Moreover, we observed similar excitatory drive specific changes after the loss of key histone deacetylases (histone deacetylase 1 and 2) that form a complex with MeCP2 and mediate transcriptional regulation. These findings suggest a distinct role for MeCP2 and its cofactors in the regulation of evoked excitatory neurotransmission compared with their essential role in basal synaptic activity.


2018 ◽  
Author(s):  
Koto Kikuma ◽  
Xiling Li ◽  
Sarah Perry ◽  
Qiuling Li ◽  
Pragya Goel ◽  
...  

ABSTRACTThe nervous system confronts challenges during development and experience that can destabilize information processing. To adapt to these perturbations, synapses homeostatically adjust synaptic strength, a process referred to as homeostatic synaptic plasticity. At the Drosophila neuromuscular junction, inhibition of postsynaptic glutamate receptors activates retrograde signaling that precisely increases presynaptic neurotransmitter release to restore baseline synaptic strength. However, the nature of the underlying postsynaptic induction process remains enigmatic. Here, we designed a forward genetic screen to identify factors necessary in the postsynaptic compartment to generate retrograde homeostatic signaling. This approach identified insomniac (inc), a gene that encodes a putative adaptor for the Cullin-3 ubiquitin ligase complex and is essential for normal sleep regulation. Intriguingly, we find that Inc rapidly traffics to postsynaptic densities and is required for increased ubiquitination following acute receptor inhibition. Our study suggests that Inc-dependent ubiquitination, compartmentalized at postsynaptic densities, gates retrograde signaling and provides an intriguing molecular link between the control of sleep behavior and homeostatic plasticity at synapses.


Sign in / Sign up

Export Citation Format

Share Document